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1 Introduction

Whether carbon emissions are priced in asset markets is crucial for understanding if, and how,

financial markets incentivize the transition to a less carbonized economy. Carbon-emitting

firms may face a higher cost of capital if carbon transition risks are priced into asset markets,

or if investors who oppose emissions reduce their investment in polluting firms. Surprisingly,

there is still no consensus on whether polluting firms are forced to pay a premium to raise

capital in the stock market—with different empirical approaches yielding divergent results.

In this paper, we develop a stylized model and derive new predictions that we then test

using data from the U.S. stock market. We document that firms’ emissions intensity, defined

as CO2 emissions divided by revenues, is a positively priced characteristic. Our analysis

also shows that several regressions used in the literature are mis-specified in a way that

hinders the ability to find evidence of pricing for emissions intensity, thus reconciling divergent

existing results. Finally, we show that the magnitude of the pricing depends on whether

“super emitters”—mostly firms operating in electric power generation—are included in the

estimation.

Our empirical analysis is based on a theoretical insight that we illustrate in an intuitive

model. We build on the stylized fact that firms’ emissions intensities are very persistent and

well approximated by a random walk. Assuming, for simplicity, that emissions intensity is the

only priced characteristic, we then use the log linear stock return decomposition in Campbell

and Shiller (1988) and Campbell (1991) to show that expected stock returns are driven by

(i) emissions intensity and (ii) the product of firms’ long-run average price-dividend ratios

with their emissions intensity surprises—which capture the sensitivity of firms’ realized stock

return to a permanent change in their future required stock return:

Standard regression︷ ︸︸ ︷
ri,t − rf,t︸ ︷︷ ︸

Excess stock return

= γei,t−1

Standard regression residual︷ ︸︸ ︷
− γ ×

(
PDi

)︸ ︷︷ ︸
Price-dividend ratio

×
(
ei,t − ei,t−1

)
︸ ︷︷ ︸
Emissions intensity

surprises

,

where ei,t is emissions intensity of firm i at time t.

We use this pricing equation to derive five new testable predictions. First, a regression of
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excess stock return on lagged emissions intensity yields unbiased and consistent estimates.

Second, a similar regression of excess stock return on contemporaneous emissions intensity

suffers from measurement error (the regressor should be expected emissions intensity) and

omitted variable (the regressor is correlated with the emissions intensity surprise in the

regression residual) biases. Third, the omitted variable bias in the contemporaneous regression

is more pronounced among firms with high price-dividend ratios as their stock prices (and

returns) are more sensitive to changes in future required stock returns. Fourth, the omitted

variable bias in the contemporaneous regression vanishes if the residual driven by the product

of the long-term price-dividend ratio and emissions intensity surprise is included in the

regression. Fifth, if the residual term and the lagged (instead of contemporaneous) emissions

intensity are both included in the regression, the omitted variable bias and the measurement

error vanish, and specific sign restrictions in the regression should be satisfied.

We test these five predictions by combining data on emissions from S&P Trucost with

stock and firm information from CRSP and Compustat. Our empirical results are structured

in five parts. First, we show that emissions intensity is priced in equity markets by estimating

our preferred lagged specification: we regress, at an annual frequency, stock returns on lagged

emissions intensity, together with a set of lagged firm-level controls.1 Our sample initially

excludes firms operating in “Electric Power Generation, Transmission and Distribution” to

avoid fitting these few super emitters with all other firms in the same regression model. The

evidence in support of emissions intensity being priced is robust to the inclusion of industry

fixed effects, to the choice of control variables, and to the use of only observations based

on firm-reported (instead of data vendor-estimated) emissions intensities. However, this

regression is highly sensitive to the inclusion of super emitters. Specifically, we show that

1Our finding that emissions intensity is priced may stem from the portfolio choice of investors who oppose
investing in polluting firms or from investors requiring compensation for transition risk. There is, of course,
the third possibility that emissions intensity is correlated with firms’ cash flows, which might, in turn, be
associated with a cash flow risk premium. This possibility is unlikely to be a concern in our setting since
the literature has shown (i) that emissions intensity is uncorrelated with firms’ cash flows (Aswani et al.,
2024) and earnings surprises (Atilgan et al., 2023), (ii) that green firms outperform brown firms when climate
change concerns increase unexpectedly (Pastor et al., 2021), and (iii) that high unexpected changes in climate
change concerns increase the discount factor of brown firms with no effect on cash flows (Ardia et al., 2023).
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the magnitude and significance of the estimated coefficients on emissions intensity increase

substantially as we progressively drop super emitters from the sample.

Second, our data supports the second prediction by showing that the estimation of

a specification of stock return on contemporaneous emissions intensity yields small and

statistically insignificant coefficients—consistent with the small and statistically insignificant

estimates in Bolton and Kacperczyk (2021) and the often negative estimates in Aswani et al.

(2024). According to our model, these coefficients are consistent with an attenuation bias

that pushes the coefficient on emissions intensity towards zero due to measurement error, and

to an omitted variable bias that pushes the coefficient on emissions intensity in a negative

direction.

We then show that our third prediction is also verified in the data. Specifically, the

downward bias of the emissions intensity coefficient in the contemporanous regression is

particularly severe in the subsample of firms with large price-dividend ratios as these stocks

are particularly sensitive to a permanent change in the required rate of return.

Third, we show evidence in support of the last two predictions. Specifically, we include

the theoretically-derived omitted variables in the contemporaneous and lagged regressions,

thus fixing the omitted variable bias in the former and both the omitted variable bias and

measurement error in the latter. Our estimates support the theoretical prediction as the

estimated coefficient on emissions intensity increases as we progressively fix the biases. The

estimation results also confirm the sign restrictions predicted by our model.

Fourth, we show that our results are driven by the post-Climate Accord period and are

less pronounced for large firms. The first result supports the interpretation that our estimates

are driven by a pricing factor related to emissions intensity. The second result helps reconcile

our findings with the no-pricing results in Zhang (2025): regressions are weighted by firm

size in Zhang (2025), giving less importance to observations where we find the evidence for

pricing to be the strongest.

Fifth, we show that the pricing of emissions intensity is negative for super emitters, in

stark contrast with the rest of our sample. While a detailed analysis of super emitters is

beyond the scope of this paper, our results are consistent with (i) emissions intensities being

a noisy measure of “greenness” among super emitters (for which we provide supporting
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evidence) and (ii) a linear model being ill-suited to capture carbon pricing for these firms.

Our framework helps trace conflicting results in the literature back to specific modeling

choices. Once the regressions are correctly specified, the evidence points at emissions intensity

being a priced characteristic. Specifically, our results help reconcile the finding that emissions

intensity affects institutional investors’ demand (Pedersen et al., 2021) by amounts that

are large enough to be priced (Bolton and Kacperczyk, 2021), but appear not to be priced

(Bolton and Kacperczyk, 2021, 2023; Aswani et al., 2024). We also show that all studies

based on regressing monthly excess stock return on annual emissions intensity (all studies

that use annual emissions intensity data, to our knowledge) suffer from measurement error

and omitted variable bias if investors learn about emissions intensity through the year but

emissions intensities are reported only annually. We show that estimations that use annual

return data can reduce these biases.

Related literature. Our paper is related to the literature on the asset pricing implications

of climate risk and ESG investing—and particularly to the strand of this literature studying

whether firms’ emissions are priced in equity markets. Within this literature, our paper

is closely related to papers that regress stock returns on measures of carbon emissions,

controlling for other factors known to explain stock returns. These include Bolton and

Kacperczyk (2021), Bolton and Kacperczyk (2023), Lioui and Misra (2023), Garvey et al.

(2018), Zhang (2025), Pedersen et al. (2021), and Aswani et al. (2024).

As shown in Table 1, while all these papers run regressions of stock returns on a measure

of emissions and several controls, they do so using different timing (contemporaneous versus

lagged emissions measure), data sample, and emissions variable (emissions versus emissions

intensity).2 These discrepancies lead to different results, in terms of emissions variables

positively or negatively affecting stock returns. For instance, Bolton and Kacperczyk (2021),

Bolton and Kacperczyk (2023), and Lioui and Misra (2023) find that firms with higher

2While some of these papers consider several measures of emissions in their analysis, in this table
“emissions variable” refers to the variable used for the main results of the corresponding paper.
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Paper Timing Data Emission variable Relation

Bolton and Kacperczyk (2021) Contemporaneous 2005–2017 Emissions level Positive
Bolton and Kacperczyk (2023) Lagged 2005–2018 Emissions level Positive
Lioui and Misra (2023) Lagged 2009–2024 Emissions intensity Positive
Garvey et al. (2018) Lagged 2011–2015 Emissions intensity Negative
Zhang (2025) Lagged 2009–2021 Emissions intensity Negative
Pedersen et al. (2021) Lagged 2009–2019 Emissions intensity Negative
Aswani et al. (2024) Contemporaneous 2005–2019 Emissions intensity None

Table 1: Studies regressing stock returns on emission variables. This table compares papers
regressing stock returns on emission variables across several dimensions: timing (contemporaneous versus
lagged), data sample, emission variable (emissions versus emissions intensity), and effect of the emission
variable on stock returns (positive or negative). Despite some general agreement on the most relevant controls,
the set of control variables is also somewhat different across these studies.

emissions obtain higher stock returns, while Garvey et al. (2018), Zhang (2025), and Pedersen

et al. (2021) find that firms with higher emissions achieve lower stock returns. Meanwhile,

Aswani et al. (2024) finds no effect of emissions on stock returns.3

Our work is also related to papers that explore the impact of emissions on stock return using

either different methodologies (such as forming portfolios of firms sorted by their emissions),

alternative emission measurements (such as MSCI ESG ratings, sensitivity to climate news,

industrial pollution measures, etc.), or alternative estimates of firms performance (such as

estimates of the firm’s required cost of capital).4 Within this more general literature, results

are not conclusive either. For instance, Alessi et al. (2020), Hsu et al. (2023) and Eskildsen

et al. (2024) find that more polluting firms offer higher stock return, while In et al. (2019),

Cheema-Fox et al. (2021), Giese et al. (2021), Huij et al. (2021), Ardia et al. (2023), Bauer

3Using panel regressions, Bolton and Kacperczyk (2021) and Bolton and Kacperczyk (2023) find that
high-emissions firms face a higher cost of capital than low-emissions firms, while emissions intensity does
not appear to affect the cost of capital. Aswani et al. (2024) and Zhang (2025) argue that the evidence that
emissions are priced might (i) be the result of economic activity being priced (firms emit more carbon when
producing more) and (ii) be affected by the use of low quality emissions data—as carbon emissions are often
estimated by data vendors rather than reported by firms. In turn, Lioui and Misra (2023) emphasizes the
important differences in constructing firm’s portfolios that are value weighted, as in Zhang (2025), versus
those that are sustainability weighted, as in Pastor et al. (2021) and Pastor et al. (2022).

4The ultimate goal of this literature is to estimate the impact of a measure of emissions on required
stock returns (or required cost of capital). While many papers, including all papers in Table 1, use realized
stock returns as a proxy for required stock returns like we do, some papers impose additional assumptions to
estimate required stock returns as the specific ex-ante expected component of realized stock returns.
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et al. (2022), Pastor et al. (2022), Berg et al. (2022), and Karolyi et al. (2023) find the

opposite. Meanwhile, Görgen et al. (2020), Alves et al. (2023), and Lindsey et al. (2024) find

no effect of pollution on firms’ stock returns.

Closely related to our work, Gormsen et al. (2024) analyzes firms’ investor calls and finds

that green firms perceive their cost of capital to be lower since 2016. In their model, there is a

cross-firm channel of capital reallocation from brown to green firms and a within-firm channel

inducing all firms to use more green capital relative to brown capital. In turn, Hsu et al.

(2023) shows that a long-short portfolio constructed from firms with high versus low toxic

emissions intensity generates a positive risk-adjusted stock return, interpreted as evidence of

a new systematic risk related to environmental policy uncertainty. In a recent paper, Berk

and Van Binsbergen (2025) concludes that, at current participation levels, the divestiture

strategy is unlikely to have a large impact on the long-term cost of capital of targeted firms.

Hence, using primary markets would be a more effective strategy to affect social change.

Finally, Hartzmark and Shue (2024) shows that increasing financing costs for brown firms

leads to large negative changes in firms’ environmental impact.

Our paper is the first one to derive a theoretically grounded equation relating the expected

and unexpected components of emissions intensity to stock returns. The resulting regression

specification shows that, if emissions intensity is priced, the sensitivity of firms’ stock returns

to innovations in emissions intensities is approximately proportional to firms’ price-dividend

ratios. This insight underpins our empirical tests and helps explain conflicting results in the

literature by tracing them to specific modeling choices.

Outline. The remainder of the paper is organized as follows. Section 2 presents the

theoretical framework relating carbon emissions intensity to required stock return, derives

five predictions, and discusses how to reconcile the divergent results in the literature. Section

3 introduces our data and discusses a few facts about the distribution of emissions intensity.

Section 4 tests our predictions in the context of the U.S. stock market. Section 5 concludes.
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2 Theoretical framework

Our theoretical framework is structured in three parts. Section 2.1 presents a stylized model

showing how investors’ preferences (i) about the mean and variance of their wealth and (ii)

about investing in stocks issued by CO2 emitters affect firms’ required and realized stock

return. Building on these results, Section 2.2 derives a new equation relating emissions to

firm’s stock returns in the case emissions are priced in the stock market. Section 2.3 uses

this derived relationship to propose new empirical predictions, which we then test in Section

4. Section 2.4 discusses how our theoretical framework helps reconcile seemingly divergent

results in the literature.

2.1 Stylized model

Our setting focuses on investors’ preferences and the timing of information on emissions.5

Timeline. There are four dates: 0, t, 1, 2. At date 0, investors trade assets and form

portfolios of risky assets (stocks) and one-period risk-free assets. At date t < 1, investors

receive information on the emissions of the firms that issued the risky assets. At date 1,

investors re-optimize their portfolios by trading risky and risk-free assets. At date 2, the

assets are liquidated and investors consume.

Assets. The economy has an infinitely elastic supply of risk-free assets with gross return rf

between t = 1 and t = 2. In addition, there are N risky assets. Their supply is denoted by

the N × 1 vector X̄, where the units of X̄ are shares of stock. The risky assets can only be

liquidated at date 2. At that time, their value is given by the N × 1 vector v, which has a

distribution v ∼ N (v̄,Ω).

Investors. There are M investors indexed by m = 1, . . .M . Investors choose their portfolios

to maximize their utility over date-2 consumption and date-2 emissions. Investor m’s vector

5For fuller asset pricing models, see Pastor et al. (2021), Pedersen et al. (2021), and Baker et al. (2022).
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of risky asset holdings is denoted by Xm. Investors have mean-variance preferences over their

date-2 consumption and have a non-pecuniary dislike for holding shares of firms with high

emissions.6 Specifically, the utility of investor m is:

Um[Wm,2,E(em,t)] = E(Wm,2)−
1

2
AmV ar(Wm,2)− νmE(em,t), (1)

where Wm,2 is the wealth of investor m at t = 2, Am is investor m’s risk aversion, E(em,t)

is the expected emissions of investor m’s investments, and νm is investor m’s dislike for

emissions. We assume that positive values of em,t are associated with more pollution. Hence,

negative values of em,t (e.g., from shorting polluting firms) are desirable.

While our discussion often refers to em,t as the “emissions” of investor m’s portfolio, our

entire analysis is based on firm-level emissions normalized by firm revenues—a measure often

referred to as “emissions intensity” in the literature. Similarly, our empirical analysis in

Sections 3 and 4 is entirely based on emissions intensities. For a discussion of how institutional

investors use emissions intensities to build ESG portfolios, see Bolton and Kacperczyk (2021).7

We assume the expected emissions from an investor’s holdings of asset i are equal to

the number of shares the investor holds times firms’ expected emissions per share (ei).

Aggregating across firms, the expected emissions of investor m’s holdings are:

E(em,t) = X ′
me,

where e is the N × 1 vector of firms’ emissions per share.

6Baker et al. (2022) shows how, despite the hedging benefits of polluting stocks, environmentalists
underweight polluting stocks in equilibrium when (i) they coordinate to internalize pollution or (ii) when
they have nonpecuniary disutility from holding polluting stocks. We follow assumption (ii) to induce
environmentalists to underweight polluting stocks.

7In addition, Aswani et al. (2024) and Zhang (2025) both suggest that emissions intensity, rather than
emissions, is the best measure of firms’ propensity to pollute. By scaling emissions with a measure of economic
activity (revenues), emissions intensity can be interpreted as a measure of the cleanness of a firm’s technology.
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Solving the model. The model is solved by backward induction from the portfolio choice

problem at t = 1. At t = 1, investors solve

max
Xm,1,Bm,1

Um[Wm,2,E(em, t)]

subject to the identity

Wm,2 = X ′
m,1v +B1,mrf , (2)

and subject to the budget constraint

X ′
m,1P1 +B1,m = W1,m, (3)

where B1,m is investor m’s allocation in the risk-free asset at t = 1, rf is the risk-free asset

gross return, P1 is the vector of prices of the risky assets at t = 1, and W1,m is investor m’s

wealth at t = 1.

First, we solve for B1,m in (3) and plug it into (2). Second, we plug this expression into

(1) and further simplify, thus rewriting the optimization problem for investor m as

max
Xm,1

rfW1,m +X ′
m,1(v̄ − rfP1)−

1

2
AmX

′
m,1ΩXm,1 − νmX

′
m,1e.

The first order condition for investor m is

Xm,1 =
1

Am

Ω−1(v̄ − νme− rfP1).

Note that, relative to a standard mean-variance problem, expected emissions alters v̄ to

v̄ − νme.

The market clearing condition requires the sum of investors’ asset demands to equal the

outstanding supply. Imposing market clearing yields

M∑
m=1

1

Am

Ω−1(v̄ − νme− rfP1) = X̄,

where X̄ is the vector of aggregate supply for each stock. Solving for the vector of prices of
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risky assets (P1) yields

P1 =
1

rf

(
v̄ −

ΩX̄ + e
∑M

m=1
νm
Am∑M

m=1
1

Am

)
. (4)

We assume all elements of P1 are positive. Under this assumption, the vector of gross

expected returns on risky assets from t = 1 to t = 2, ri, is

ri = v̄./P1 = rf v̄./

(
v̄ −

ΩX̄ + e
∑M

m=1
νm
Am∑M

m=1
1

Am

)
, (5)

where the expression “./” represents the element-by-element division of the two vectors.

Furthermore, the assets’ risk premium from t = 1 to t = 2, ri − rf , is given by

ri − rf = v̄./P1 − rf = rf

[
v̄./

(
v̄ −

ΩX̄ + e
∑M

m=1
νm
Am∑M

m=1
1

Am

)
− 1

]
. (6)

Effect of news about emissions on equity prices and required returns. Our model

generates two main insights. Suppose that, between t = 0 and t = 1, there is new information

about higher emissions for asset i between t = 1 and t = 2. First, this news reduces the

price of the asset at t = 1 (P1) as shown in (4)—equivalently, this news lowers the realized

stock return between t = 0 and t = 1 below what was expected at t = 0. Second, this news

increases the asset’s required stock return (ri) and risk premium (ri − rf ) between t = 1 and

t = 2, as shown in (5) and (6), respectively. More generally, our model shows that news

about an increase in expected emissions (i) reduces contemporaneous realized stock returns

and (ii) increases required stock returns in future periods. The next section develops a few

tests based on this intuition.8

8Imposing market clearing and simplifying, we find that the change in investors’ holdings of risky assets
at t = 1 due to a change in expected emissions is given by

dXm =
1

Am

(∑M
s=1

νs

As∑M
s=1

1
As

− νm

)
Ω−1de,

so that, given positive (negative) news about expected emissions, an investor increases (decrease) her allocation
if her dislike for emissions (νm) is lower (higher) than a risk tolerance-weighted average of the dislike for
emissions of all other investors in the economy.
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2.2 Relating emissions and stock returns

We now derive how emissions are related to firm’s stock returns when emissions are priced

in the stock market. Our analysis begins with the decomposition of excess returns for risky

asset i at time t into two components: (i) expected excess stock returns (i.e., required excess

stock returns) conditional on time t− 1 information and (ii) an innovation in excess stock

returns based on information that arrives between t− 1 and t

ri,t − rf,t = Et−1(ri,t − rf,t) + [Et − Et−1](ri,t − rf,t) (7)

The first term on the right hand side shows that required stock returns between t− 1 and

t are based on time t− 1 information. The second term is the innovation in stock returns.

The Campbell (1991)’s log-linearization of the present value relationship shows that this

second term is due to innovations in expected future required excess stock returns, expected

future risk-free rates, and expected future dividend growth:

[Et−Et−1](ri,t−rf,t) ≈ [Et−Et−1]

[
−

∞∑
s=1

ρsi (ri,t+s − rf,t+s)−
∞∑
s=1

ρsirf,t+s +
∞∑
s=0

ρsigi,t+s

]
, (8)

where ρi is a parameter of linearization (smaller than one) given by eḡi−r̄i (where ḡi is the

average growth rate of firm i′s dividends, and r̄i is the average expected future required

stock return for firm i). The decomposition is broken into three terms. The first term shows

that positive innovations in future risk premia negatively affect stock returns at time t. The

second term shows that positive innovations in future one-year risk-free rates negatively affect

contemporaneous stock returns. The third term shows that positive innovations in future

dividend growth positively affect stock returns.

Our goal is to apply the insights in (7) and (8) in a simple setting where emissions is the

only priced characteristic. To this end, we make a few assumptions.

Assumption 1.

Et−1(ri,t − rf,t) = γEt−1[ei,t] with γ > 0.

This assumption states that firm i’s required excess stock returns at time t depend on time

t− 1 beliefs about firm i’s emissions at time t (ei,t). This assumption also implies (i) that
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expected emissions are a positively priced characteristic (γ > 0) and (ii) that emissions is the

only variable determining required stock returns—this strong part of the assumption is only

for expositional purposes and we relax it in our empirical work (and could relax it in our

theoretical work without altering the intuition).

Assumption 2.

ei,t|It−1 ∼ N(ei,t−1, σ
2
u) ∀t.

This assumption implies that emissions for each firm i follow a random walk

ei,t = ei,t−1 + ui,t,

with the innovation ui,t distributed i.i.d. across firms, i.e., ui,t ∼ N(0, σ2
u).

We show in Appendix A that the random walk assumption is a reasonable approximation

of the data when the first order autocorrelation of emissions intensity (our measure of

emissions in the data) is close to 1. Using annual data, Zhang (2025) documents annual

autocorrelation coefficients for emissions intensities of 0.99 for scope-1 emissions and 0.94 for

scope-2 emissions. In addition, Bolton and Kacperczyk (2021) shows, using autoregressions,

that emissions and emissions intensity are highly persistent.

As a final note, these two assumptions can be generalized to allow (i) for expected

technical progress, which would correspond to a random walk with downward drift, and (ii)

for innovations in emissions (ui,t) to be heteroskedastic across firms or industries. Since these

refinements do not qualitatively alter the derivations below, we do not explore them further.

Assumption 3. rf and and gi are constant.

This assumption is for simplicity in order to focus on emissions intensity in our theoretical

analysis.

The last assumption and the law of iterated expectations imply:

(Et − Et−1)ei,t+s = ei,t − ei,t−1
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for all s ≥ 0. Applying this assumption together with Assumption 1, and using (8), yields

ri,t − rf = γei,t−1 − γ

[
∞∑
s=1

ρsi

]
(ei,t − ei,t−1).

Using the Gordon Growth model, the term
∑∞

s=1 ρ
s
i =

ρi
1−ρi

is approximately equal to PDi,

which is the long-run average price-dividend ratio for firm i.9

This algebra leads to the main theoretical result in this paper, which we highlighted in

the introduction:

ri,t − rf,t = γei,t−1 − γ PDi (ei,t − ei,t−1). (9)

Theoretically-derived equation. In our empirical analysis, we replace the unknown

long-run average price-dividend ratio PDi in equation (9) with an approximation based on

the average of the price-dividend ratios at times t− 1, t− 2, and t− 3.10 To simplify, we label

this approximation as
(

Pi,t−1

Di,t−1

)
in the expressions that follow, and treat the below expression

that uses this approximation as the true theoretical equation that generates stock returns if

emissions intensity is the only priced factor:

ri,t − rf,t = γei,t−1 − γ

(
Pi,t−1

Di,t−1

)
(ei,t − ei,t−1). (10)

This equation, a key part of our empirical analysis, shows how emissions approximately

affect stock returns when (i) required returns are priced linearly, (ii) emissions follow a

random walk (a reasonable approximation as previously discussed), and (iii) required excess

stock returns during period t, Et−1(ri,t − rf,t), are only a function of variables known before

9More specifically:

ρi
1− ρi

=
eḡi−r̄i

1− eḡi−r̄i
=

eḡi

er̄i − eḡi
≈ 1 + ḡi

r̄i − ḡi
= PDi,

where PDi is the price-dividend ratio in the Gordon Growth model for a firm with constant dividend growth
rate ḡi and constant required stock return r̄i.

10The approximation for the price-dividend ratio is based on information known at time t− 1 or earlier to
avoid look-ahead bias in our empirical work.
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period t.

The first term on the right hand side is the required return conditional on time t − 1

information. The second term captures how the innovation in emissions during time t (ei,t −

ei,t−1) affects contemporaneous stock returns—a positive innovation lowers contemporaneous

stock returns. This insight is consistent with the Campbell (1991) equation and the second

implication of our theoretical model illustrated at the end of Section 2.1. This equation also

shows that the response to the innovation in emissions is proportional to firms’ price-dividend

ratios. This intuitive relationship originates from the sensitivity of stock returns to permanent

changes in required stock returns being proportional to the price-dividend ratio in the Gordon

Growth model. Note that firms with high price-dividend ratios have high dividend growth

rates and/or low required stock returns—characteristics that make their stock prices more

sensitive to changes in future required stock returns.

Equation (10) crucially relies on the assumption that the contemporaneous negative

correlation between innovations in emissions and stock returns is driven only by news about

discount rates. This assumption is consistent with the evidence found in Ardia et al. (2023),

which empirically confirms the prediction in Pastor et al. (2021) that green firms outperform

brown firms when climate change concerns increase unexpectedly. More importantly, Ardia

et al. (2023) also finds that high unexpected changes in climate change concerns increase

(decrease) the discount factor of brown (green) firms with no noticeable effect on cash flows.

Also supporting this assumption, Atilgan et al. (2023) shows that emissions intensity is not

a significant explanatory variable for earning surprises (a cash flow measure) but emissions

(not normalized by firm revenues) and changes in emissions do explain earning surprises.

2.3 Five testable predictions

We now use the derived relationship between emissions intensity and excess stock returns to

propose new ways to test whether emissions intensity is priced in equity markets.

Deriving new predictions. Recall that our theoretically derived equation (10) decomposes

stock returns into an expected stock return component (γei,t−1) and a residual component

(−γ(Pi,t−1/Di,t−1)(ei,t−ei,t−1)). Given that this residual component is uncorrelated with ei,t−1
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and has zero mean, an OLS regression of ri,t − rf,t on ei,t−1 yields unbiased and consistent

estimates for γ. We refer to this specification as the “lagged” specification:

ri,t − rf,t = α + γei,t−1 + ϵi,t, (11)

where the only regressor is emissions intensity in year t − 1 (we will shortly motivate the

choice of an annual frequency).

To derive additional predictions, we build on the following “contemporaneous” specification

that is often used in the literature:

ri,t − rf,t = α + γei,t + ϵi,t, (12)

where the only regressor is emissions intensity in year t. For simplicity, we derive predictions

when the regression is estimated by OLS in the cross-section. Assuming that the theoretically

derived equation (10) is the true process through which stock returns are generated, the

contemporaneous equation (12) is affected by both measurement error and omitted variable

bias—the first shrinking the estimated coefficient γ towards 0 and the second shrinking it

downward, potentially pushing it to negative values.

We now provide the intuition behind the measurement error and the omitted variable

biases. The measurement error is classical. This is because the correct variable to use in

equation (12) is ei,t−1 instead of ei,t, which is equal to the correct regressor plus noise:

ei,t = ei,t−1 + ui,t, (13)

since emissions intensity is a random walk (Assumption 2). This classical measurement error

shrinks the estimate of γ towards 0.

To provide intuition for the omitted variable bias, recall that the residual component in

our theoretically derived equation (10) can be written as

[
−γ

Pi,t−1

Di,t−1

(ei,t − ei,t−1)

]
︸ ︷︷ ︸

Residual component in (10)

= −γ
Pi,t−1

Di,t−1

× ui,t. (14)
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Focusing only on a single firm i, the comparison of equations (13) and (14) shows that,

conditional on time t−1 information, the regressor ei,t used in equation (12) covaries negatively

with the residual in the correct theoretical equation:

Covt−1

(
ei,t,−γ

Pi,t−1

Di,t−1

× ui,t

)
= −γ

Pi,t−1

Di,t−1

× σ2
u. (15)

The negative covariance between the regressor and the true residual biases the estimate of

γ in equation (12) in a negative direction. The extent of the bias depends on the magnitude

of firm i’s price-dividend ratio. If the price-dividend ratio is large, the magnitude of the bias

is also large. Hence, if emissions intensity is priced (γ > 0), an estimation of equation (12)

using firms with high price-dividend ratios would be characterized by a large omitted variable

bias. Conversely, the same estimation using firms with low price-dividend ratios would be

characterized by a smaller omitted variable bias.

In Appendix B, we formalize these intuitions for measurement error and omitted variable

bias for large samples when the contemporaneous equation (12) is estimated in a cross-sectional

regression:

plim γ̂ = γ

(
σ2
et−1

σ2
et−1

+ σ2
u

)
− γ

(
E
(
Pi,t−1

Di,t−1

)
σ2
u

σ2
et−1

+ σ2
u

)
, (16)

where the first term is due to classical measurement error and the second term is due to

omitted variable bias. In the expression for the omitted variable bias, E
(

Pi,t−1

Di,t−1

)
is essentially

the average price-dividend ratio among the sample of firms used in the regression, and shows

that the omitted variable bias depends on this average.11

Having established the omitted variable bias, our analysis shows how we can fix it by

adding
(

Pi,t−1

Di,t−1

)
(ei,t − ei,t−1) as a regressor to the contemporaneous equation (12).

Five predictions. In sum, assuming that equation (10) is the true stock return generating

process, our five predictions can be summarized as follows:

11The expressions σ2
u and σ2

et−1
represent the cross-sectional variance of the innovation in emissions

intensity during year t and the cross-sectional variance of emissions intensity at time t− 1, respectively.
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P1. The estimate of γ in the lagged equation (11) is unbiased and consistent.

P2. The estimate of γ in the contemporaneous equation (12) is biased towards 0 due to

classical measurement error and downward biased due to omitted variable bias.

P3. The estimate of γ in the contemporaneous equation (12) increases in the subsample of

observations with low (lagged) price-dividend ratios and decreases in the subsample of

observations with high (lagged) price-dividend ratios.

P4. Adding
(

Pi,t−1

Di,t−1

)
(ei,t − ei,t−1) as a regressor in the contemporaneous equation (12)

eliminates the omitted variable bias, thus increasing the estimate of γ.

P5. The estimation of (10), written as

ri,t − rf,t = α + η1ei,t−1 + η2

(
Pi,t−1

Di,t−1

)
ei,t + η3

(
Pi,t−1

Di,t−1

)
ei,t−1,

yields the following parametric restrictions: (i) η1 > 0, (ii) η2 < 0, (iii) η3 > 0, and (iv)

η1 = −η2 = η3. In addition, the coefficient on the lagged emissions intensity (η1) is

larger than the same coefficient on the contemporaneous regression in P4.

2.4 Interpreting results in the literature

Our theoretical framework, and the resulting testable predictions, help reconcile apparently

conflicting results in the literature. Let’s focus on two important specification choices adopted

in existing empirical studies: (i) the use of the contemporaneous equation (12) and (ii) the

use of monthly stock returns.

The contemporaneous regression is, as discussed, affected by measurement error and

omitted variable bias that shrink the estimated coefficient on emissions toward zero, and

potentially to negative values. This observation helps explain the small and statistically

insignificant contemporaneous regression coefficients in Bolton and Kacperczyk (2021) and
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the often negative coefficient in Aswani et al. (2024).12 Finally, the downward bias also helps

reconcile the finding that the effect of divestment on carbon intensity does not seem to be

priced even though its scale is large enough to move prices (Bolton and Kacperczyk, 2021).

Several papers (e.g., Bolton and Kacperczyk, 2021; Aswani et al., 2024) analyze whether

emissions intensity (or emissions) is priced by estimating a specification where the dependent

variable is monthly excess stock returns even though emissions are measured at an annual

frequency. Specifically, the emissions variable for each month in a year is set to be (i) the

same value as the emissions for that year in some specifications, (ii) the same value as the

emissions for the previous year in others, or (iii) the same value as the emissions publicly

released most recently (Zhang, 2025).13 The higher frequency of stock returns compared with

emissions creates two potential concerns. First, investors might receive other information

about emissions at a higher frequency than annual, thus inducing a measurement error when

using annual emissions repeated at a monthly frequency. This measurement error shrinks

the estimated monthly coefficient γ toward zero. Second, year t emissions are not known to

investors during year t but are correlated with what investors likely learn about emissions

during the year. In other words, year t emissions are correlated with the innovation in

emissions, creating an omitted variable problem—yet another source of downward bias in

γ. In Appendix C, we show that both concerns can be fixed if the regressions are estimated

using annual frequency data, as we do in our empirical analysis.14

In sum, measurement error and omitted variable bias help explain the often negative (or

insignificant) findings in the literature on whether emissions intensity is priced in the stock

12Specifically, Table 8 in Aswani et al. (2024) shows the estimation of several variants of the contempora-
neous regression. Two thirds of the estimated coefficients on emissions intensity are negative, and one third
are negative and statistically significant.

13The controls in these regressions are measured at a monthly, quarterly, or annual frequency, depending
on the paper. The dating of the controls is sometimes contemporaneous with the emissions, or alternatively
lagged by one period, where a period corresponds to the frequency with which the control is measured.

14Specifically, we show that, even if investors learn about emissions intensity during the year, estimating
the regressions with annual data overcomes the measurement error and omitted variable bias present in the
monthly stock return regressions if (i) emissions intensity is a random walk and (ii) investors learn about
emissions intensities for each year t by the end of year t. An additional reason for using annual frequency
regressions is that investors’ information on climate is incorporated into stock returns at a lower than monthly
frequency for small firms (Pastor et al., 2022).
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market. In Section 3 and Section 4, we test the five predictions developed in this section

using annual stock returns.

3 Data and empirical facts about emissions

We now present our data and discuss some key summary statistics. Section 3.1 illustrates our

main data sources and how we combine them to obtain our final data. Section 3.2 presents a

set of summary statistics, mostly about emissions intensities across firms and industries.

3.1 Data

Our data set is the result of combining carbon emissions intensities from S&P Global Trucost,

and stock returns and firm information from CRSP and Compustat, respectively.

Carbon emissions. Firm-level carbon emissions are obtained from S&P Trucost.15 Trucost

provides information at an annual frequency on firms’ greenhouse gas (GHG) emissions,

which Trucost obtains from publicly disclosed sources (e.g., annual reports) or, in absence

of disclosures, from Trucost’s proprietary input-output model.16 Emissions are reported in

absolute values (tonnes of carbon dioxide equivalent emissions, or tCO2e) and normalized

by the company’s annual consolidated revenues in millions of U.S. dollars (tCO2e/USD 1

million revenue). As discussed, we refer to this normalized measure as emissions intensity.

Following the Greenhouse Gas Protocol (available at https://ghgprotocol.org), Trucost

distinguishes between three types of emissions. The definition provided by S&P is as follows.

Scope-1 emissions are from directly emitting sources that are owned or controlled by a

company. For example, scope-1 emissions include the emissions produced by the internal

15See www.spglobal.com/spdji/en/documents/additional-material/faq-TruCost.pdf for details
about the data coverage, data collection, and variable definitions.

16According to Trucost, “Trucost’s environmentally extended input-output (EEIO) model combines
industry-specific environmental impact data with quantitative macroeconomic data on the flow of goods and
services between different sectors in the economy.” As we discuss later, our analysis is robust to the exclusion
of observations estimated by Trucost.
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combustion engines of a trucking company’s trucking fleet. Scope-2 emissions are from the

consumption of purchased electricity, steam, or other sources of energy generated upstream

from a company’s direct operations. Scope-3 emissions encompass all other emissions

associated with a company’s operations that are not directly owned or controlled by the

company. Hence, scope-3 emissions include several sources of indirect emissions in both the

company’s supply chain and downstream from the company’s owned or controlled operations.

We follow the literature and focus our analysis on scope-1 and scope-2 emissions intensities.

Constructing our data. We combine data from three sources. First, we obtain firm-year

emissions intensity data from S&P Trucost. Trucost’s coverage begins in 2002 for large-cap

companies and expands significantly from 2016 onward to include small- and mid-cap firms.

We merge this data with the S&P Company Foundation file to obtain more detailed company

and industry-level information. We restrict the sample to firms headquartered in the U.S.

Additionally, we link the Trucost data with the Business Entity Cross Reference Service

(BECRS) to obtain a company ID variable for further merging.

Second, we obtain stock prices from the CRSP monthly stock file. Using the Capital IQ

link table, we match the company ID variable from BECRS to the corresponding GVKEY

in CRSP.17 From the effective month-year end date, we aggregate stock return data over

the preceding 12 months. We calculate firm-level excess returns by subtracting the yield

of a one-year zero coupon U.S. Treasury bond that matures at the end of the firm’s fiscal

year from one-year stock returns.18 For each firm, we keep only common stocks. If a firm

has multiple classes of common stocks, we keep the class with the highest number of shares

outstanding. To maintain consistency in assigning stock returns to specific years, the year

17Note that Trucost reports emissions data based on fiscal year-end dates, which vary across firms and do
not always align with the calendar year. To address this inconsistency, we define an effective month-year end
date for each firm. If the fiscal year ends within the first 14 days of a month, we assign the previous month
as the effective month-year end. Conversely, if the fiscal year ends within the second half of the month, we
assign the current month as the effective month-year end. In our final sample, 18,418 of the 24,971 firm-year
observations have the period end date in the second half of December, aligning with the calendar year. This
subsample represents approximately 74% of the sample.

18The zero-coupon yields are from the Federal Reserve Board’s website and are computed using the
methodology in Gurkaynak et al. (2007).

20



variable for each observation is adjusted based on the effective month-year end date. If

the month falls in the first half of the calendar year, the stock returns are assigned to the

preceding year. Otherwise, they are assigned to the same calendar year. In sum, our yearly

returns are based on fiscal years.

Third, we obtain firm-level financials from Compustat. We merge this data by matching on

GVKEY and aligning with the year variable assigned to each firm’s stock return aggregation.

Final data. Our final data set consists of an unbalanced panel of 24,971 observations

featuring 3,125 firms across 22 industries (NAICS 2-digit codes) at an annual frequency

from 2002 to 2023. The unit of observation is firm-year. The top-5 industries in terms of

number of observations are (i) “Manufacturing A” (5,960 observations; 752 firms; NAICS

code 33), (ii) “Professional, Scientific, and Technical Services” (2,932 observations; 642 firms;

NAICS code 54), (iii) “Manufacturing B” (2,749 observations; 405 firms; NAICS code 32), (iv)

“Information” (2,534 observations; 424 firms; NAICS code 51), and (v) “Mining, Quarrying,

and Oil and Gas Extraction” (1,552 observations; 181 firms; NAICS code 21).19 As mentioned

before, the Trucost coverage increases substantially starting from 2016. The number of

observations jumps from an average of 739 per year in 2010–15 to an average of 2,085 in

2016–21. See Table E.1 and Table E.2 for the annual breakdown of observations and the

breakdown of observations across industries, respectively. Table E.3 shows the summary

statistics of the main variables used in our empirical work.

19Note that the NAICS codes 32 and 33 both correspond to “Manufacturing.” The NAICS code 32 is
composed of the following industries: “Wood Product Manufacturing” (NAICS 321), “Paper Manufacturing”
(NAICS 322), “Printing and Related Support Activities” (NAICS 323), “Petroleum and Coal Products
Manufacturing” (NAICS 324), “Chemical Manufacturing” (NAICS 325), “Plastics and Rubber Products
Manufacturing” (NAICS 326), and “Nonmetallic Mineral Product Manufacturing” (NAICS 327). The NAICS
code 33 is composed of the following industries: “Primary Metal Manufacturing” (NAICS 331), “Fabricated
Metal Product Manufacturing” (NAICS 332), “Machinery Manufacturing” (NAICS 333), “Computer and
Electronic Product Manufacturing” (NAICS 334), “Electrical Equipment, Appliance, and Component”
(NAICS 335), “Transportation Equipment Manufacturing” (NAICS 336), “Furniture and Related Product
Manufacturing” (NAICS 337), and “Miscellaneous Manufacturing” (NAICS 339).
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Figure 1: Large cross-sectional variation in scope-1 emissions intensities across and within
industries. This figure shows the (within-industry and across-industry) cross-sectional variation in scope-1
emissions intensities from 2002 to 2023. Firm-year observations are grouped by their 2-digit NAICS code
on the x-axis. The violin plots show the distribution of emissions intensities within each industry, where
the width of the plot at a given value reflects the relative frequency of observations at that level. Each dot
represents a firm-year observation, with red dots in “Utilities” highlighting firms in the “Electric Power
Generation, Transmission and Distribution” subsector (NAICS code 2211).

3.2 Empirical facts about emissions

The distribution of emissions intensities across firms and across industries is very skewed

with a few firms and a few industries responsible for a sizable share of emissions. Across

industries, the most polluting ones are (i) “Utilities” (NAICS code 22), (ii) “Agriculture,

Forestry, Fishing and Hunting” (NAICS code 11), (iii) “Transportation and Warehousing”

(NAICS code 48), and (iv) “Mining, Quarrying, and Oil and Gas Extraction” (NAICS

code 21). Specifically, the mean scope-1 emissions intensities, over the entire sample period

for these four industries are 2,866, 725, 657, and 561, respectively. The contrast with the

least polluting industries is staggering: “Information” (NAICS code 51) and “Finance and

Insurance” (NAICS code 52) have mean scope-1 emissions intensities equal to 4.16 and 10.33,

respectively. In the cross-section of industries, the distribution of mean industry-level scope-1

emissions intensities has a mean of 265, a median of 55, and a skewness of 3.6.
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The large variation in emissions intensities is present also within industries, as documented

in Figure 1. The figure shows, for each industry (2-digit NAICS code) on the x-axis,

the distribution of firm-year observations in terms of their scope-1 emissions intensities.

Utilities (NAICS code 22) has by far the largest cross-sectional variation in scope-1 emissions

intensities. In addition to a few firm-year observations with emissions intensities above 20,000,

this industry is characterized by both firms with high and low emissions intensities. Note

that this industry is ranked only sixth in our data in terms of firm-year observations (1,220

observations), but is likely an important driver of any cross-sectional analysis of emissions

intensity, even within industries. This observation is logical: “Utilities” is inherently an

heterogenous industry, which includes “Water, Sewage and Other Systems” (NAICS code 2213)

with median scope-1 emissions intensity of 100, “Natural Gas Distribution” (NAICS code 2212)

with median scope-1 emissions intensity of 646, and “Electric Power Generation, Transmission

and Distribution” (NAICS code 2211) with a staggering median scope-1 emissions intensity

of 4,269. The red dots in the figure indicate the emissions intensities of firms operating in

“Electric Power Generation, Transmission and Distribution.”

4 Empirical evidence

We now show empirical evidence suggesting that carbon emissions intensity is priced in equity

markets. Section 4.1 presents the estimation of our preferred specification. Section 4.2 shows

that this estimation is highly sensitive to the inclusion of “super emitters”—observations

characterized by very high values of emissions intensity, mostly by firms operating in “Electric

Power Generation, Transmission, and Distribution.” Section 4.3 presents additional results

based on testing our theoretical predictions. Section 4.4 shows that our results are driven

by the post-Climate Accord period and analyzes how the pricing varies across the firm size

distribution. Finally, Section 4.5 shows that the pricing of carbon emissions is substantially

different among super emitters.
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4.1 Our preferred specification

Following our first prediction (P1), our preferred specification is based on the lagged equation

(11) as follows:

Rit = α + β′X it−1 + µt + ϵit, (17)

where i is a firm and t is a year. The independent variable is the annual excess stock return

of firm i over the one-year risk-free rate from the end of year t− 1 to the end of year t. The

vector X it−1 includes a set of firm-level variables, lagged by one year. The regression also

includes time fixed effects (µt) for all specifications, and industry fixed effects (based on

2-digit NAICS codes) in some specifications. We cluster standard errors at the firm level.

The firm-level variables include firm-level emissions intensity, defined (i) as scope-1

emissions intensity or (ii) as the sum of scope-1 and scope-2 emissions intensities. The other

firm-level variables are meant to capture the influence of other characteristics potentially

correlated with both emissions intensity and stock returns. These firm-level controls included

in the vector X it−1 are (i) the log of firm’s market capitalization, (ii) firm’s leverage (defined

as total debt divided by total assets), (iii) firm’s investments normalized by total assets, (iv)

firm’s stock return on equity (defined as net income divided by shareholders’ equity), (v) the

volatility of the firm’s stock (defined as the standard deviation of monthly stock returns over

a 12-month period), (vi) firm’s beta (defined as the CAPM beta calculated over a 12-month

period), and (vii) firm’s book-to-market ratio.

While informed by economic theory, there is, of course, a degree of judgment in deciding

which control variables to include in this regression. For this reason, we will check how our

estimated coefficients of interest are robust to the inclusion of different control variables

below. Finally, we estimate equation (17) in the sample of firms excluding firms operating

in “Electric Power Generation, Transmission and Distribution.” As shown in Figure 1, these

firms tend to have extremely high emissions intensities that would be challenging to fit in the

same linear regression model with firms with much lower emissions intensities. We discuss

the role of these super emitters in Section 4.2 and Section 4.5.

The estimation results in Table 2 are structured as follows. The first three columns only
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Rit

(1) (2) (3) (4) (5) (6)

Scope-1 emissionit−1 0.0996∗∗ 0.1548∗∗∗

(0.0474) (0.0521)
Scope-1+Scope-2 emissionit−1 0.1080∗∗ 0.1620∗∗∗

(0.0460) (0.0499)
MCAPit−1 −0.1267 −0.1392 −0.1441 −0.1459 −0.1550 −0.1605

(0.2308) (0.2308) (0.2309) (0.2366) (0.2365) (0.2366)
LEVit−1 −0.0020 −0.0025 −0.0026 −0.0023 −0.0024 −0.0025

(0.0019) (0.0019) (0.0020) (0.0022) (0.0022) (0.0022)
INVEST/Ait−1 −0.4488∗∗∗ −0.4645∗∗∗ −0.4677∗∗∗ −0.4176∗∗∗ −0.4167∗∗∗ −0.4167∗∗∗

(0.0762) (0.0771) (0.0771) (0.0916) (0.0918) (0.0918)
ROEit−1 0.0415∗∗∗ 0.0415∗∗∗ 0.0415∗∗∗ 0.0395∗∗∗ 0.0394∗∗∗ 0.0394∗∗∗

(0.0078) (0.0078) (0.0078) (0.0078) (0.0078) (0.0078)
VOLit−1 −1.270 −1.251 −1.258 −0.9091 −0.9388 −0.9484

(0.9024) (0.9026) (0.9024) (0.9243) (0.9238) (0.9240)
BETAit−1 0.8588∗∗∗ 0.8657∗∗∗ 0.8644∗∗∗ 0.7706∗∗ 0.7718∗∗ 0.7704∗∗

(0.3274) (0.3274) (0.3274) (0.3298) (0.3296) (0.3296)
B/Mit−1 1.864∗∗ 1.638∗∗ 1.603∗ 1.826∗∗ 1.663∗ 1.633∗

(0.8236) (0.8234) (0.8245) (0.8549) (0.8499) (0.8506)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓

Observations 22,225 22,225 22,225 22,225 22,225 22,225
R2 0.2482 0.2484 0.2484 0.2500 0.2502 0.2503

Table 2: Effect of lagged emissions on stock returns. This table shows the estimation results of
equation (17). The unit of observation is firm-year. The sample runs at an annual frequency from 2001 to
2023. The sample excludes observations of firms classified under “Electric Power Generation, Transmission
and Distribution” (NAICS 2211). Scope-1 emissionit−1 and Scope-1+Scope-2 emissionit−1 are the lagged
scope-1 emissions intensity and the sum of scope-1 and scope-2 emissions intensities, respectively. The
reported coefficients on emissions intensities are multiplied by 100 for readability. The control variables
are lagged by one year, winsorized at the 2nd and 98th percentiles, and defined as follows: MCAPit−1 is
log of market capitalization; LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is investment
divided by total assets; ROEit−1 is net income divided by shareholders’ equity (multiplied by 100); VOLit−1

is the standard deviation of monthly stock returns over a 12-month period; BETAit−1 is the CAPM beta
over a 12-month period; B/Mit−1 is the book-to-market ratio. Standard errors clustered at the firm level in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.

include year fixed effects, while the last three columns include industry and year fixed effects.

Columns (2) and (5) use scope-1 emissions intensity as a measure of firm-level emissions.

Columns (3) and (6) use the sum of scope-1 and scope-2 emissions intensity as a measure of

firm-level emissions. Finally, Columns (1) and (4) are estimated without firm-level emissions

intensity.

The estimation results provide strong and robust evidence that emissions intensity is

priced. This result (i) is robust to including, or not including, industry fixed effects, and

(ii) survives in the subsample that excludes emissions estimated by Trucost using their

proprietary input-output model (Table E.4). In sum, our results contrast with the empirical
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literature suggesting that evidence for pricing is fragile to whether emissions are reported

by firms or estimated by data vendors and to whether industry fixed effects are included in

the estimation (Aswani et al., 2024; Zhang, 2025). Table E.5 and Table E.6 show that the

estimated coefficients are also remarkably stable as we progressively saturate the specification

with control variables, adding them one by one.20

To provide an economic interpretation of our estimated coefficients, we compute, for each

firm-year observation of emissions intensity, the required stock return associated with that

level of emissions intensity. Figure F.1 shows the cumulative distribution function of these

estimated required stock returns. The required stock returns for scope-1 emissions intensity

are no more than 50 basis points per year for around 90% of the firm-year observations—and

no more than 10 basis points per year for around 80% of firm-year observations. To compare

these results with the literature, note that existing work often estimates a “greenium” as the

cost of capital difference between “brown” and “green” firms (i.e., firms that have high and

low emissions, respectively). For example, Gormsen et al. (2024)’s summary of the literature

measures the greenium as the required return for firms with greenness one standard deviation

below the median minus the required return for firms with greenness one standard deviation

above the median. Based on this definition, our estimate is at about the 75th percentile

among the range of studies summarized.

4.2 Dealing with super emitters

We now show that the regression results discussed above are highly sensitive to the inclusion

of observations of firms with very high emissions, which tend to operate in “Electric Power

Generation, Transmission and Distribution.” As prima facie evidence, Table E.7 shows a

20Specifically, Table E.5 shows the estimation results with industry-year fixed effects and Table E.6 shows
the estimation results with year fixed effects. In each table, Panel A shows the coefficient stability for
scope-1 emissions intensity and Panel B shows the coefficient stability for the sum of scope-1 and scope-2
emissions intensities. The number of observations in these tables diminishes as we add more control variables
due to some missing values for the control variables. In unreported results, we confirm that the estimated
coefficients on scope-1 emissions intensity and scope-1+scope-2 emissions intensity are virtually unchanged if
we re-estimate these regressions in the subsample of observations where all control variables are non-missing.
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PANEL A (1) (2) (3) (4)

Scope-1 emissionit−1 −0.0066 0.0394 0.1168 0.4061
(0.0269) (0.0428) (0.1023) (0.2482)

Winsorization None 2% 5% 10%

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE

Observations 22,693 22,693 22,693 22,693
R2 0.2507 0.2508 0.2508 0.2508

Rit

PANEL B (1) (2) (3) (4)

Scope-1 emissionit−1 0.0220 0.1389∗∗∗ 0.3620∗∗∗ 1.327∗∗∗

(0.0356) (0.0539) (0.1225) (0.3138)

Winsorization None 2% 5% 10%

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓

Observations 22,693 22,693 22,693 22,693
R2 0.2525 0.2526 0.2527 0.2530

Table 3: Effect of lagged emissions on stock returns, sensitivity with respect to winsorization of
emissions intensity. This table shows the estimation results of specification (17). The unit of observation is
firm-year. The sample runs annually from 2001 to 2023. Panel A includes only year fixed effects, while Panel
B includes both year and industry fixed effects. Scope-1 emissionit−1 is the lagged scope-1 emissions intensity.
The reported coefficients on emissions intensities are multiplied by 100 for readability. Emissions intensites
are unwinsorized in Column (1), winsorized at the 2nd and 98th percentiles in Column (2), the 5th and 95th
percentiles in Column (3), and the 10th and 90th percentiles in Column (4). The set of control variables
included in our baseline specification are also included in these two panels but omitted for brevity. The
control variables are lagged by one year, winsorized at the 2nd and 98th percentiles, and defined as follows:
MCAPit−1 is log of market capitalization; LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is
investment divided by total assets; ROEit−1 is net income divided by shareholders’ equity (multiplied by
100); VOLit−1 is the standard deviation of monthly stock returns over a 12-month period; BETAit−1 is the
CAPM beta over a 12-month period; B/Mit−1 is the book-to-market ratio. Standard errors clustered at the
firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

version of Table 2 estimated over the full sample of firms, thus including these super emitters.

The coefficients of interest are statistically insignificant and very close to zero.

Table 3 analyses this sensitivity in a more systematic way by showing the estimated

coefficients on scope-1 emissions intensities in the full sample of firms (including super

emitters) as the level of winsorization of this variable changes. Panel A focuses on the
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regressions with year fixed effects and Panel B focuses on the regressions with both year and

industry fixed effects. The control variables are included in the estimation but omitted from

the table for brevity. In each panel, Column (1) shows the results with no winsorization.

Columns (2) to (4) consider winsorization levels at the 2 percent, 5 percent, and 10 percent

level, respectively. The estimated coefficients and their statistical significance increase as the

winsorization becomes more restrictive. Table E.8 shows consistent results for the sum of

scope-1 and scope-2 emissions intensities.

Taken together, the results presented so far suggest that emissions intensity is likely

priced in equity markets but the magnitude of such pricing is highly dependent on how super

emitters are modeled. Section 4.5 shows that the pricing of carbon emissions is substantially

different among super emitters compared with the rest of the firms in our sample. The

analysis in Section 4.3 and Section 4.4 focuses, again, on the sample of firms excluding super

emitters.

4.3 Testing more model predictions

We now test the last four predictions from our theoretical framework.

P2: Attenuated coefficient in a contemporaneous regression. Our second prediction

is based on the contemporaneous equation (12), i.e., the regression of period-t stock returns

on period-t emissions intensity. Our theoretical discussion points out that this specification

is affected by measurement error and omitted variable bias. The former attenuates the

estimated coefficient on emissions toward zero. The latter is negative, pulling the estimated

coefficient on emissions toward zero, and even potentially to a negative value.

Table 4 shows the estimation of this contemporaneous specification that is often used in

the literature.The estimated coefficients on emissions intensity are small and not statistically

significant, a result holding regardless of the level of fixed effects and regardless of the

definition used to measure firm-level emissions (scope-1 vs. sum of scope-1 and scope-2).

This result is in line with the small and statistically insignificant estimates in Bolton and

Kacperczyk (2021) and the often negative estimates in Aswani et al. (2024).
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(1) (2) (3) (4) (5) (6)

Scope-1 emissionit 0.0320 0.0627
(0.0542) (0.0617)

Scope-1+Scope-2 emissionit 0.0338 0.0637
(0.0498) (0.0555)

MCAPit−1 −0.2750 −0.2791 −0.2808 −0.2991 −0.3033 −0.3057
(0.2393) (0.2396) (0.2398) (0.2454) (0.2455) (0.2456)

LEVit−1 −0.0017 −0.0019 −0.0019 −0.0022 −0.0022 −0.0022
(0.0020) (0.0021) (0.0021) (0.0023) (0.0024) (0.0024)

INVEST/Ait−1 −0.4094∗∗∗ −0.4146∗∗∗ −0.4156∗∗∗ −0.3784∗∗∗ −0.3791∗∗∗ −0.3793∗∗∗

(0.0784) (0.0794) (0.0795) (0.0936) (0.0938) (0.0938)
ROEit−1 0.0463∗∗∗ 0.0464∗∗∗ 0.0464∗∗∗ 0.0445∗∗∗ 0.0445∗∗∗ 0.0445∗∗∗

(0.0087) (0.0087) (0.0087) (0.0087) (0.0087) (0.0087)
VOLit−1 −0.2397 −0.2352 −0.2386 0.0250 0.0081 0.0026

(0.9644) (0.9646) (0.9644) (0.9882) (0.9886) (0.9890)
BETAit−1 0.8180∗∗ 0.8206∗∗ 0.8206∗∗ 0.7635∗∗ 0.7651∗∗ 0.7652∗∗

(0.3410) (0.3411) (0.3411) (0.3443) (0.3443) (0.3443)
B/Mit−1 1.769∗∗ 1.701∗ 1.692∗ 1.689∗ 1.628∗ 1.618∗

(0.8627) (0.8715) (0.8719) (0.8951) (0.8950) (0.8956)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓

Observations 21,034 21,034 21,034 21,034 21,034 21,034
R2 0.2454 0.2454 0.2454 0.2468 0.2468 0.2468

Table 4: Effect of contemporaneous emissions on stock returns. This table shows the estimation
results of equation (17) but with contemporaneous, not lagged, emissions intensity. The unit of observation is
firm-year. The sample runs at at annual frequency from 2001 to 2023. The sample excludes observations of
firms classified under “Electric Power Generation, Transmission and Distribution” (NAICS 2211). Scope-1
emissionit and Scope-1+Scope-2 emissionit are the scope-1 emissions intensity and the sum of scope-1 and
scope-2 emissions intensities, respectively. The reported coefficients on emissions intensities are multiplied by
100 for readability. The control variables are lagged by one year, winsorized at the 2nd and 98th percentiles,
and defined as follows: MCAPit−1 is log of market capitalization; LEVit−1 is total debt divided by total
assets; INVEST/Ait−1 is investment divided by total assets; ROEit−1 is net income divided by shareholders’
equity (multiplied by 100); VOLit−1 is the standard deviation of monthly stock returns over a 12-month
period; BETAit−1 is the CAPM beta over a 12-month period; B/Mit−1 is the book-to-market ratio. Standard
errors clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

P3: The omitted variable bias varies across firms’ price-dividend ratios. Our

third test is based on the prediction that, if emissions intensity is priced, the omitted variable

bias discussed above is more severe in the subsample of firms with larger price-dividend

ratios, as these stocks are more sensitive to a permanent change in the required rate of return

compared to stocks with low price-dividend ratios. As discussed, this prediction relies on the

Gordon Growth model—or generalizations in the spirit of Campbell (1991) and Campbell

and Shiller (1988)—to produce reasonable approximations of the sensitivity of stock prices to

required returns.
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PANEL A: Below median PD (1) (2) (3) (4)

Scope-1 emissionit 0.1482∗∗∗ 0.1143∗

(0.0569) (0.0681)
Scope-1+Scope-2 emissionit 0.1489∗∗∗ 0.1182∗

(0.0551) (0.0653)

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓

Observations 5,444 5,444 5,444 5,444
R2 0.4118 0.4119 0.4154 0.4155

Rit

PANEL B: Above median PD (1) (2) (3) (4)

Scope-1 emissionit −0.1662 −0.1605
(0.1104) (0.1087)

Scope-1+Scope-2 emissionit −0.1723∗ −0.1715∗

(0.1000) (0.0983)

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓

Observations 5,444 5,444 5,444 5,444
R2 0.3940 0.3940 0.3972 0.3973

PANEL C: Coefficient Test (HA : βbelow median PD < βabove median PD)

Z-statistic industry clustering 1.7804∗∗ 1.8612∗∗ 1.4718∗ 1.6061∗

p-value industry clustering (0.0375) (0.0314) (0.0705) (0.0541)
Z-statistic firm clustering 2.6597∗∗∗ 2.9691∗∗∗ 2.2668∗∗ 2.6122∗∗∗

p-value firm clustering (0.0039) (0.0015) (0.0117) (0.0045)
Z-statistic time-industry clustering 1.6582∗∗ 1.7198∗∗ 1.5015∗ 1.6365∗∗

p-value time-industry clustering (0.0486) (0.0427) (0.0666) (0.0509)
Z-statistic time-firm clustering 2.1685∗∗ 2.3165∗∗∗ 2.3228∗∗∗ 2.5514∗∗∗

p-value time-firm clustering (0.0151) (0.0103) (0.0101) (0.0054)

Table 5: Effect of contemporaneous emissions intensity on stock returns, subsamples of below
median and above median price-dividend ratio. This table shows the estimation results of specification
(17) but with contemporaneous, not lagged, emissions intensity. The unit of observation is firm-year. The
sample runs annually from 2001 to 2023. The sample excludes observations of firms classified under “Electric
Power Generation, Transmission and Distribution” (NAICS 2211). For each year, firms data are split into
subsamples based on whether their price-dividend ratios for that year are above or below the median for
that year. Panel A only uses data for the below median price-dividend ratio subsample. Panel B only uses
data for the above median price-dividend ratio subsample. The price-dividend ratio of firm i at time t is
calculated as the average of the price-dividend ratios at time t− 1, t− 2, and t− 3, respectively. Scope-1
emissionit and Scope-1+Scope-2 emissionit are the scope-1 emissions intensity and the sum of scope-1 and
scope-2 emissions intensities, respectively. The reported coefficients on emissions intensities are multiplied by
100 for readability. The set of control variables included in our baseline specification are also included in
these two panels but omitted for brevity. The control variables are lagged by one year, winsorized at the 2nd
and 98th percentiles, and defined as follows: MCAPit−1 is log of market capitalization; LEVit−1 is total debt
divided by total assets; INVEST/Ait−1 is investment divided by total assets; ROEit−1 is net income divided
by shareholders’ equity (multiplied by 100); VOLit−1 is the standard deviation of monthly stock returns over
a 12-month period; BETAit−1 is the CAPM beta over a 12-month period; B/Mit−1 is the book-to-market
ratio. Panel C tests that the difference of the coefficients in Panels A and B is greater than 0 (with four
different assumptions about standard errors as discussed in Appendix D). Standard errors clustered at the
firm level are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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To test this prediction, we compute price-dividend ratios for each of our firm-year obser-

vations using data on dividends paid on common shares. Specifically, to limit the importance

of outliers, for each firm i at each date t, we compute the price-dividend ratio as the average

of the price-dividend ratios at times t− 1, t− 2, and t− 3.21 We can compute such ratios for

around half of our observations as a large number of firm-year observations are characterized

by zero dividends (and a much smaller number of observations have missing dividends). We

refer to the subsample with firm-year observations that allow the calculation of price-dividend

ratios as the “price-dividend sample.” We divide this sample into (i) a subsample of obser-

vations with below median price-dividend ratios and (ii) a subsample of observations with

above median price-dividend ratios, where medians are calculated in the cross-section of firms

every year. Panels A and B in Table 5 show the estimation results in these two subsamples.22

Recall that the theory predicts that, if emissions intensity is priced, the contemporaneous

regression suffers from omitted variable bias, and that such bias is less severe for the below

median price-dividend ratio subsample and more severe for the above median price-dividend

ratio subsample. The estimation results in Table 5 confirm this prediction. Every coefficient

in Panel A is greater than the corresponding coefficient in Panel B. Furthermore, the theory

predicts that a severe omitted variable bias can cause the estimated coefficients on emissions

intensity to turn negative, as we observe in Panel B. Panel C shows that the difference

21There is an alternative justification for this approach. In our most general derivation of equation (10),
the Campbell and Shiller (1988) log-linearization requires the use of the long-run average price-dividend
ratio for each firm in our regressions. However, the use all our data to estimate this quantity would generate
look-ahead bias (since some regressors for stock returns at time t would be based on information dated after
time t). To avoid such bias, we estimate the price-dividend ratio for predicting stock returns at time t as a
weighted average of price-dividend ratios dated before date t.

22By using the price-dividend ratios only to assign firms to subsamples, our Z-tests in Panel C are unlikely
to be influenced by the price-dividend ratios being necessarily a noisy estimate of the long-run average
price-dividend ratio that theory suggests we should use to sort firms into subsamples. To provide the intuition
behind this claim, note that the difference in the regression coefficients from data subsample-A and data
subsample-B is driven by the difference in the long-run average price-dividend ratios in each of the subsamples.
If there is no noise in the estimated price-dividend ratios, the data are properly sorted into the two subsamples.
Hypothetical noise can be problematic if it causes the composition of the subsamples to change in ways that
substantially alter the true long-run average price-dividend ratio in each subsample. This possibility is unlikely
because the firms that have the most influence on the average price-dividend ratios in each subsample are
those with price-dividend ratios far from the median. Hence, these firms are the least likely to be reassigned
to the other group due to noise.
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between the coefficients in Panel A and Panel B is statistically greater than zero. To do so,

we compute Z-statistics for the difference between the two sets of coefficients, estimating

the covariance between the coefficients in Panels A and B allowing correlations across the

parameter estimates in each subsample by industry, firm, time and industry, and firm and

time.23

Taken together, these comparisons are consistent with our theory, supporting the inter-

pretation that emissions intensity is priced.

P4: Addressing the omitted variable bias. We now test the fourth prediction of our

model: if emissions intensity is priced, the omitted variable bias (but not the measurement

error) in the contemporaneous regression is addressed by adding, as a regressor, the lagged

price-dividend ratio interacted with the innovation in emissions intensity. The estimated

coefficient on emissions intensity is expected to increase with this “fix.”

Table 6 shows the estimation results. Consistent with the theory, the inclusion of the

omitted variables raises the coefficients on emissions intensity compared with Table 4, although

they do not reach statistical significance. We also observe that the price-dividend interaction

terms have the predicted signs (more on this in our test of P5).

P5: Addressing the omitted variable bias and measurement error. Our final

test mimics the previous estimation with one difference: we replace the contemporaneous

un-interacted emissions intensity with the lagged emissions intensity. Our model suggests

that, if emissions intensity is priced, this estimation solves both the omitted variable bias

and the measurement error. In other words, we estimate equation (10).

Table 7 shows the estimation results. Consistent with the theory, the coefficient on the

(now lagged) emissions intensity variable increases even more compared with the previous

table and is now more statistically significant. Additionally, the coefficients on the interaction

23We allow correlations across the parameter estimates in each subsample and use clustering logic to
capture the correlation. When we use clustering to capture the parameter correlations, for consistency, we
also use it to capture parameter variances. See Appendix D for details.
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(1) (2) (3) (4)

Scope-1 emissionit 0.0877 0.0634
(0.0628) (0.0751)

Scope-1 emissionit × PD Ratioit−1 −0.2371 −0.2234
(0.1886) (0.1869)

Scope-1 emissionit−1 × PD Ratioit−1 0.2573 0.2537
(0.2030) (0.2014)

Scope-1+Scope-2 emissionit 0.0807 0.0557
(0.0594) (0.0706)

Scope-1+Scope-2 emissionit × PD Ratioit−1 −0.2082 −0.1962
(0.1423) (0.1409)

Scope-1+Scope-2 emissionit−1 × PD Ratioit−1 0.2317 0.2296
(0.1641) (0.1634)

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓

Observations 10,637 10,637 10,637 10,637
R2 0.3984 0.4006 0.3984 0.4006

Table 6: Estimation of equation (10) to address the omitted variable bias. This table shows the
estimation results of equation (10), where the uninteracted emissions intensity is contemporaneous. The unit
of observation is firm-year. The sample runs annually from 2001 to 2023. The sample excludes observations
of firms classified under “Electric Power Generation, Transmission and Distribution” (NAICS 2211). The
price-dividend ratio (PD Ratio) of firm i at time t is calculated as the average of the price-dividend ratios at
time t− 1, t− 2, and t− 3, respectively. We divide PD Ratio by 100 for readability. Scope-1 emissionit and
Scope-1+Scope-2 emissionit are the scope-1 emissions intensity and the sum of scope-1 and scope-2 emissions
intensities, respectively. The reported coefficients on emissions intensities are multiplied by 100 for readability.
The set of control variables included in our baseline specification are included but omitted for brevity. The
control variables are lagged by one year, winsorized at the 2nd and 98th percentiles, and defined as follows:
MCAPit−1 is log of market capitalization; LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is
investment divided by total assets; ROEit−1 is net income divided by shareholders’ equity (multiplied by
100); VOLit−1 is the standard deviation of monthly stock returns over a 12-month period; BETAit−1 is the
CAPM beta over a 12-month period; B/Mit−1 is the book-to-market ratio. Standard errors clustered at the
firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

terms between price-dividend ratio and the contemporaneous and lagged emissions intensities

continue to have the correct signs. Finally, the magnitude of the coefficients on the emissions

intensity variables and the interaction terms are not statistically different, consistent with

the fifth and last prediction of the model.

Taken together, the results in this section strongly support our theoretical predictions,

suggesting that emissions intensity is a priced characteristics in the U.S. stock market.
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(1) (2) (3) (4)

Scope-1 emissionit−1 0.0978∗∗ 0.0758
(0.0474) (0.0538)

Scope-1 emissionit × PD Ratioit−1 −0.1980 −0.1950
(0.1897) (0.1898)

Scope-1 emissionit−1 × PD Ratioit−1 0.2150 0.2216
(0.2028) (0.2033)

Scope-1+Scope-2 emissionit−1 0.0946∗∗ 0.0726
(0.0446) (0.0503)

Scope-1+Scope-2 emissionit × PD Ratioit−1 −0.1759 −0.1737
(0.1446) (0.1443)

Scope-1+Scope-2 emissionit−1 × PD Ratioit−1 0.1944 0.2016
(0.1648) (0.1656)

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓

Observations 10,637 10,637 10,637 10,637
R2 0.3985 0.4006 0.3985 0.4006

Table 7: Estimation of equation (10) to address the omitted variable bias and measurement
error. This table shows the estimation results of specification (10), where the uninteracted emissions
intensity is lagged. The unit of observation is firm-year. The sample runs annually from 2001 to 2023.
The sample excludes observations of firms classified under “Electric Power Generation, Transmission and
Distribution” (NAICS 2211). The price-dividend ratio (PD Ratio) of firm i at time t is calculated as the
average of the price-dividend ratios at time t− 1, t− 2, and t− 3, respectively. Scope-1 emissionit−1 and
Scope-1+Scope-2 emissionit−1 are the lagged scope-1 emissions intensity and the sum of scope-1 and scope-2
emissions intensities, respectively. The reported coefficients on emissions intensities are multiplied by 100
for readability. The set of control variables included in our baseline specification are included but omitted
for brevity. The control variables are lagged by one year, winsorized at the 2nd and 98th percentiles, and
defined as follows: MCAPit−1 is log of market capitalization; LEVit−1 is total debt divided by total assets;
INVEST/Ait−1 is investment divided by total assets; ROEit−1 is net income divided by shareholders’ equity
(multiplied by 100); VOLit−1 is the standard deviation of monthly stock returns over a 12-month period;
BETAit−1 is the CAPM beta over a 12-month period; B/Mit−1 is the book-to-market ratio. Standard errors
clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

4.4 Additional results

We now present two additional results. First, we show that our results are driven by the

post-Climate Accord period (supporting the interpretation that our results are driven by

pricing related to CO2). Second, we show how our results vary across the firm size distribution,

reconciling our findings with Zhang (2025).

The first analysis examines whether emissions intensity is priced due to a potential

correlation with some other non-CO2 related priced factor (or characteristic) that is omitted

from our regression. In that case, its pricing should be unrelated to an event that focused

investors’ attention on carbon emissions such as the 2015 Paris Climate Accord. To this end,
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PANEL A: Period 2001–15 (1) (2) (3) (4)

Scope-1 emissionit−1 0.0212 0.0085
(0.0517) (0.0586)

Scope-1+Scope-2 emissionit−1 0.0250 0.0164
(0.0511) (0.0572)

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓

Observations 8,444 8,444 8,444 8,444
R2 0.5143 0.5143 0.5174 0.5174

Rit

PANEL B: Period 2016–23 (1) (2) (3) (4)

Scope-1 emissionit−1 0.2215∗∗∗ 0.3148∗∗∗

(0.0855) (0.0968)
Scope-1+Scope-2 emissionit−1 0.2204∗∗∗ 0.3050∗∗∗

(0.0774) (0.0854)

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓

Observations 13,743 13,743 13,743 13,743
R2 0.1001 0.1002 0.1031 0.1032

Table 8: Effect of lagged emissions intensity on stock returns, pre- vs. post-Paris Accord. This
table shows the estimation results of specification (17). The unit of observation is firm-year. The sample
runs at at annual frequency from 2001 to 2023. The sample excludes observations of firms classified under
“Electric Power Generation, Transmission and Distribution” (NAICS 2211). Panel A includes observations
in the sample period from 2001 to 2015, while Panel B includes observation in the sample period from
2016 to 2023. Scope-1 emissionit−1 and Scope-1+Scope-2 emissionit−1 are the lagged scope-1 emissions
intensity and the sum of scope-1 and scope-2 emissions intensities, respectively. The reported coefficients on
emissions intensities are multiplied by 100 for readability. The set of control variables included in our baseline
specification are included in the specification but omitted for brevity. The control variables are lagged by
one year, winsorized at the 2nd and 98th percentiles, and defined as follows: MCAPit−1 is log of market
capitalization; LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is investment divided by total
assets; ROEit−1 is net income divided by shareholders’ equity (multiplied by 100); VOLit−1 is the standard
deviation of monthly stock returns over a 12-month period; BETAit−1 is the CAPM beta over a 12-month
period; B/Mit−1 is the book-to-market ratio. Standard errors clustered at the firm level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

we estimate equation (10) using data from the pre- and post-Paris Climate Accord period.

Table 8 shows that the pricing for emissions intensity using our full sample is driven by

the post-Paris Accord data. During this most recent period, the effect of emissions intensity

is larger than during the pre-Paris Accord period, and statistically significant for all of our

specifications. In sum, these results suggest that emissions intensity is priced because it is

related to climate and CO2, and not because it is correlated with some omitted factor.
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(1) (2) (3) (4)

Scope-1 emissionit−1 × Asset Q1it−1 0.1843 0.2651∗

(0.1368) (0.1468)
Scope-1 emissionit−1 × Asset Q2it−1 0.1835 0.2270∗

(0.1337) (0.1365)
Scope-1 emissionit−1 × Asset Q3it−1 0.0653 0.1183

(0.0867) (0.0864)
Scope-1 emissionit−1 × Asset Q4it−1 0.1466 0.2006∗

(0.1131) (0.1144)
Scope-1 emissionit−1 × Asset Q5it−1 −0.0060 0.0375

(0.0596) (0.0607)
Scope-1+Scope-2 emissionit−1 × Asset Q1it−1 0.1958 0.2798∗

(0.1359) (0.1461)
Scope-1+Scope-2 emissionit−1 × Asset Q2it−1 0.2073 0.2556∗

(0.1322) (0.1355)
Scope-1+Scope-2 emissionit−1 × Asset Q3it−1 0.0710 0.1187

(0.0824) (0.0821)
Scope-1+Scope-2 emissionit−1 × Asset Q4it−1 0.1490 0.2032∗

(0.1040) (0.1048)
Scope-1+Scope-2 emissionit−1 × Asset Q5it−1 0.0031 0.0454

(0.0566) (0.0587)

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓

Observations 22,225 22,225 22,225 22,225
R2 0.2485 0.2485 0.2503 0.2504

Table 9: Effect of lagged emissions intensity on stock returns, firm asset size quintile interactions.
This table shows the estimation results of specification (17), augmented with interactions with size quintiles.
Firm size quintiles are calculated yearly in the cross-section of firms using asset size (variable “act” in
Compustat). Asset Q1it−1 is the lowest quintile and Asset Q5it−1 is the highest quintile. The sample runs at
at annual frequency from 2001 to 2023. The sample excludes observations of firms classified under “Electric
Power Generation, Transmission and Distribution” (NAICS 2211). Scope-1 emissionit−1 and Scope-1+Scope-
2 emissionit−1 are the lagged scope-1 emissions intensity and the sum of scope-1 and scope-2 emissions
intensities, respectively. The reported coefficients on emissions intensities are multiplied by 100 for readability.
The set of control variables included in our baseline specification are included but omitted for brevity. The
control variables are lagged by one year, winsorized at the 2nd and 98th percentiles, and defined as follows:
MCAPit−1 is log of market capitalization; LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is
investment divided by total assets; ROEit−1 is net income divided by shareholders’ equity (multiplied by
100); VOLit−1 is the standard deviation of monthly stock returns over a 12-month period; BETAit−1 is the
CAPM beta over a 12-month period; B/Mit−1 is the book-to-market ratio. Standard errors clustered at the
firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

The second analysis examines how the pricing varies across the firm size distribution,

reconciling our findings with Zhang (2025), which estimates a specification similar to equation

(17) (e.g., Table 6 in Zhang (2025)) but finds that emissions intensity is not priced, or is
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priced negatively. Two important differences in our specifications likely drive our contrasting

results. First, we use lagged emissions intensity instead of lagged log emissions intensity as a

regressor. Logs impose a particular functional form on the relationship between emissions

intensity and required stock returns for both low- and very-high-emissions-intensity firms.

Given that the theoretical motivation for using log as a functional form is unclear, we use

a more flexible approach. Second, regressions are weighted by firm size in Zhang (2025),

effectively down-weighting the effects of small firms. We do not weight by firm size (i) as we

are interested in understanding how emissions intensity affects the cost of capital for firms of

all sizes, (ii) as doing so may reduce the precision of the regression estimates (e.g., weighting

increases standard errors in the case of homoskedasticity), and (iii) as pricing effects are more

likely to be found in thinly traded and less widely held stocks.

To investigate the role of firm size on pricing, we regress stock returns on emissions intensity

interacted with firm size quintile dummies, dropping again firms operating in “Electric Power

Generation, Transmission and Distribution” from the sample. This specification allows us to

examine whether firms of different sizes face different costs of capital due to their emissions

intensity. The point estimates in Table 9 suggest that emissions intensity is particularly

priced in the smallest two quintiles and such pricing is much weaker, or non-existent, in the

top quintile. These results suggest that the regressions in Zhang (2025) might be weighted

toward firms with weaker pricing of emissions.

Overall, the two additional results presented in this section suggest that emissions intensity

is not spuriously priced due to a correlation with an omitted factor and that such pricing is

more pronounced for smaller firms—which, to our knowledge, is a new stylized fact.

4.5 Emissions pricing among super emitters

Up till now, our empirical analysis has focused on firms excluding super emitters, namely

firms operating in “Electric Power Generation, Transmission and Distribution” (NAICS code

2211). Our decision to exclude these firms is based on Figure 1, which documents that the

emissions intensities of super emitters are extreme outliers and thus unlikely to be accurately

modeled using a linear specification.

While a detailed analysis of super emitters is beyond the scope of this paper (we also
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Rit

(1) (2) (3) (4) (5) (6)

Scope-1 emissionit−1 −0.0712∗ −0.0712∗

(0.0406) (0.0406)
Scope-1+Scope-2 emissionit−1 −0.0725∗ −0.0725∗

(0.0404) (0.0404)
MCAPit−1 1.850∗ 2.024∗ 2.031∗ 1.850∗ 2.024∗ 2.031∗

(0.9821) (1.034) (1.034) (0.9821) (1.034) (1.034)
LEVit−1 0.0052 0.0049 0.0048 0.0052 0.0049 0.0048

(0.0079) (0.0075) (0.0074) (0.0079) (0.0075) (0.0074)
INVEST/Ait−1 0.3556 0.3439 0.3478 0.3556 0.3439 0.3478

(0.4008) (0.4182) (0.4189) (0.4008) (0.4182) (0.4189)
ROEit−1 −0.0534 −0.0791 −0.0795 −0.0534 −0.0791 −0.0795

(0.1562) (0.1446) (0.1446) (0.1562) (0.1446) (0.1446)
VOLit−1 7.663 6.769 6.749 7.663 6.769 6.749

(5.806) (5.520) (5.512) (5.806) (5.520) (5.512)
BETAit−1 1.104 1.264 1.262 1.104 1.264 1.262

(2.066) (2.079) (2.078) (2.066) (2.079) (2.078)
B/Mit−1 −0.6054 1.006 1.049 −0.6054 1.006 1.049

(4.859) (4.095) (4.089) (4.859) (4.095) (4.089)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓

Observations 468 468 468 468 468 468
R2 0.6648 0.6703 0.6705 0.6648 0.6703 0.6705

Table 10: Effect of lagged emissions on stock returns subsample of “Electric Power Generation,
Transmission and Distribution” firms. This table shows the estimation results of equation (17). The
unit of observation is firm-year. The sample runs at an annual frequency from 2001 to 2023. The sample
includes only observations of firms classified under “Electric Power Generation, Transmission and Distribution”
(NAICS 2211). Scope-1 emissionit−1 and Scope-1+Scope-2 emissionit−1 are the lagged scope-1 emissions
intensity and the sum of scope-1 and scope-2 emissions intensities, respectively. The reported coefficients
on emissions intensities are multiplied by 100 for readability. The control variables are lagged by one year,
winsorized at the 2nd and 98th percentiles, and defined as follows: MCAPit−1 is log of market capitalization;
LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is investment divided by total assets; ROEit−1 is
net income divided by shareholders’ equity (multiplied by 100); VOLit−1 is the standard deviation of monthly
stock returns over a 12-month period; BETAit−1 is the CAPM beta over a 12-month period; B/Mit−1 is the
book-to-market ratio. Standard errors clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, *
p<0.1.

lack statistical power), we now show that the pricing of carbon emissions is substantially

different within this group of firms and discuss potential explanations for such empirical

pattern. Table 10 shows the estimation results of our preferred specification (specification

(17)) in the subsample of super emitters. The estimated coefficients on emissions intensities

are negative, in stark contrast with the estimation presented in Table 2.

These estimations may be the result of emissions intensity being a noisy—and possibly

misleading—proxy for greenness among super emitters. To illustrate the issue, recall that we

measure scope-1 emissions in units of carbon emissions per dollar of revenues (i.e., per dollar
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Figure 2: Variation in scope-1 emissions intensities within the “Electric Power Generation,
Transmission and Distribution” sector. This figure shows the within-industry cross-sectional variation
in scope-1 emissions intensities from 2002 to 2023 for firms in the “Electric Power Generation, Transmission
and Distribution” sector. Firm-year observations are grouped by sub-industry (6-digit NAICS code) on the
x-axis. The box plots show the distribution of scope-1 emissions intensities within each sub-industry.

value of output). As such, emissions intensity might not be a good measure of greenness for

industries that produce homogeneous goods using technologies with significantly different costs

and, consequently, potentially different prices. As shown in Figure 2, electricity producers

fall in this category as they use very different technologies to produce a homogeneous good.

As an example, consider two electricity producers. Utility A emits 1 pound of CO2 per

kilowatt hour (kwh) of electricity production; Utility B emits 1/2 pound of CO2 per kwh

of electricity production. They both set their prices to be just enough to cover their costs.

Utility A charges $0.10 per kwh (its emissions intensity is
emissions/kwh
revenue/kwh

= 1/.1 = 10).

Utility B charges $0.01 per kwh (its emissions intensity is 0.5/.01 = 50). Note that A has a

lower emissions intensity than B even though B is greener than A. In sum, by using the price

of the electricity sold to measure output, emissions intensity understates the greenness of

low-cost electricity producers.

Figure 2 suggests that emissions intensity may severely mismeasure greenness among

super emitters. The average emissions intensity for electrical generation from coal is 10%

39



higher than that from natural gas. By contrast, the U.S. Energy Information Administration

estimated that, in 2023, electricity production from coal generated more than double the

CO2 emissions per kwh than electricity production from natural gas—a tenfold difference

compared with the assessment based on emissions intensity.24 Finally, note that the highest

emissions intensities in our entire sample are for electrical generation using natural gas, raising

the concern that such emissions intensities might be misleading.

There is yet another reason why emissions intensity may fail to reflect the greenness of

super emitters accurately: emissions intensity ignores differences across firms’ divisions. For

example, Gormsen et al. (2024) documents how the largest energy and utility firms have

different perceived costs of capital for their brown and green divisions (e.g., a division using

fossil fuels vs. a division using renewables), suggesting that a single firm-wide emissions

intensity does not accurately capture its greenness.

In sum, the relationship between greenness and emissions intensity may be particularly

noisy among super emitters, which helps explain why the pricing of carbon emissions is

substantially different within this group of firms.

5 Conclusion

Financial markets can play an important role in helping the productive sector reduce its

carbon emissions. The idea is intuitive. Polluting firms that pay high financing costs due

to their emissions have an incentive to become greener. While this theoretical argument is

sound, its empirical relevance is still debated. Specifically, the evidence on whether carbon

emissions lead to higher financing costs is mixed.

In this paper, we ask whether carbon emissions intensity, a measure of carbon emissions

watched closely by ESG investors, is priced in equity markets. To this end, we develop a

theoretical framework, based on the stochastic properties of emissions intensity and asset

24Electricity production from coal generated 2.3 pounds of CO2 per kwh, while natural gas generated 0.96
pounds of CO2 per kwh.
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pricing theory, to analyze how emissions intensity should affect stock returns when emissions

intensity is a priced characteristic. Using this framework, we show that studies that regress

stock returns on contemporaneous emissions intensity likely suffer from measurement error

and an omitted variable bias—and that both these forces bias the coefficient on emissions

intensity downward and potentially below zero.

Our theoretical framework makes new predictions about (i) the form of the correct regres-

sion specification and (ii) how the biases in the existing literature vary across specifications

run in different subsamples, across specifications run using different variable timing, and

across specifications that add regressors defined as “omitted” by our theory. Virtually all the

predictions from our theory are confirmed in the data, providing convincing evidence that

emissions intensity is priced in equity markets. The magnitude of the pricing is heavily de-

pendent on how super emitters are treated, consistent with the extremely skewed distribution

of firm-level emissions intensity. This result is also consistent with the market potentially

treating super emitters differently, the linear specification being ill-suited to model these

firms, or emissions intensities being a noisy measure of greenness for super emitters.

Future empirical research should focus, in our view, on (i) modeling emissions pricing for

super emitters and (ii) examining the role of investors’ ESG preferences for pricing, in light

of the finding in Bolton and Kacperczyk (2021) that the asset holdings of some institutional

investors are declining in firms’ emissions intensity. On the theoretical side, more work is

needed to understand how financial markets can best support the transition to a less polluting

economy. The pricing of emissions might not be sufficient, as recent work suggests that

such pricing might provide weak or even wrong incentives for high-emitting firms (Chittaro

et al., 2025; Hartzmark and Shue, 2024; Berk and Van Binsbergen, 2025). These directions

constitute, in our view, a promising avenue for future research.
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Appendix

A The process for emissions intensity as a random walk

For parsimony, in our analysis, we derive equation (10) approximating emissions intensity as
a random walk. To justify this simplification, in this section we maintain all assumptions in
Section 2.2 except Assumption 2 that is replaced with the assumption that annual emissions
intensity for each firm i is a very slowly mean reverting AR(1) process. We then use a Taylor
series to show that the random walk specification produces a reasonable approximation of
the residual in equation (10). The AR(1) process for emissions intensity is given by:

(ei,t+1 − µi) = θi(ei,t − µi) + ui,t (A1)

where µi is the long-run mean of emissions intensity for firm i and θi is close to, but less, than
1. If emissions intensity is the only priced characteristic, ρi is well defined in the Campbell and
Shiller (1988) log-linearization (because it is mean-reverting) and given by ρi = egi−(rf+γµi).

Furthermore, using the properties of the autoregressive process, it is straightforward to
show that:

[Et+1 − Et]ei,t+k = θk−1[(ei,t+1 − µi)− θi(ei,t − µi)] (A2)

Plugging this expression in the Campbell (1991) log-linearization and simplifying, we
obtain:

(Et+1 − Et)[ri,t+1 − rf ] ≈ −γ

(
ρi

1− ρiθi

)
[(ei,t+1 − µi)− θi(ei,t − µi)] (A3)

The right hand side can be approximated as a Taylor series around θi = 1. The leading
term on the right is the same as in equation (10), and the size of the residual term in the
approximation vanishes when θi = 1 (and is small when θi is in a neighborhood close to 1).
This shows our use of the random walk approximation for emissions intensity. Also note that
the equation we derive is a reasonable approximation for the true stock return innovation
term in equation (10) if emissions intensity is a highly persistent AR(1) process with θi < 1.

B Measurement error and omitted variable bias

To illustrate the measurement error and omitted variable biases together, if γ is estimated
via OLS in equation (12) (and excess stock returns are generated by equation (10)), we have:

γ̂ =
ĈSCov(ri,t − rf,t, ei,t)

ĈSVar(ei,t)
(B1)

where CSCov and CSVar are estimates of the covariance and the variance in the cross-section,
and “ẑ” denotes the sample estimate of z. Substituting for ri,t − rf,t from equation (10), the
probability limit for γ is:
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plim γ̂ =
plim ĈSCov(γei,t−1 − γ

Pi,t−1

Di,t−1
ui,t, ei,t)

plimĈSVar(ei,t)

Finally, using Cov(x, y) = Cov(E(x|I),E(y|I)) + E(Cov(x, y|I)), we obtain:

plim γ̂ = γ

(
σ2
et−1

σ2
et−1

+ σ2
u

)
− γ

(
E(

Pi,t−1

Di,t−1

)
σ2
u

σ2
et−1

+ σ2
u

)
. (B2)

More specifically, to obtain this result, we use E(ri,t−rf |It−1) = γei,t−1 and E(ei,t|It−1) = ei,t−1.
Hence, Cov[E(ri,t − rf |It−1),E(ei,t|It−1)] = γσ2

et−1
. Furthermore, Cov(ri,t − rf , ei,t|It−1) =

Cov(−γ
Pi,t−1

Di,t−1
ui,t, ei,t|It−1) = −γ

Pi,t−1

Di,t−1
σ2
u. Hence, E(Cov(ri,t − rf , ei,t|It−1) = −γE( Pi,t−1

Di,t−1
)σ2

u.

Finally, Var(ei,t) = σ2
ei,t−1

+ σ2
u.

As discussed in the main body, the first term in equation (B2) is due to classical mea-
surement error and thus causes shrinkage of γ towards zero. The second term is the result
of omitted variable bias. This bias is negative and causes the stock return innovation to be
unexpectedly low when emissions intensity is unexpectedy high (i.e., the omitted variable
is negatively correlated with the regressor). If γ is positive, the omitted variable bias could
cause the estimated γ to become negative.

C Estimation frequency and measurement error

In this section, we analyze how measurement error may be related to estimation frequency.
To do so, we slightly modify the framework to let t denote time measured in years and to
let m denote time measured in months, with m = 0 denoting the end of year t − 1 and
m = 1, 2, ...12 denoting the ends of months 1 through 12 of year t. For simplicity, we focus
on a cross-sectional regression using one year of stock return data, measured at an annual or
a monthly frequency. In addition, to simplify aggregation, we measure stock returns in logs,
i.e., in this appendix ri,t is the log gross annual stock return during year t and ri,m is the
log gross monthly stock return in month m of year t. Given that we switched to log stock
returns, we have:

ri,t =
12∑

m=1

rm. (C1)

To further simplify, we assume the log gross risk-free rate is zero both annually and
monthly, so we do not have to keep track of the risk-free rate in the derivation.

In the text, we modeled stock returns at an annual frequency. This modeling approach
implicitly assumes that information arrives only at the end of each year. To analyze estimation
frequency, we now model stock returns monthly and then aggregate up to an annual frequency.
To do so, we assume stock returns are monthly, and continue to maintain that beliefs about
emissions intensity drive stock returns. Specifically, we assume stock returns in each month
m follow the process:
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ri,m = γmE(ei,t|Im−1)− γm
Pi,m

Di,m

[E(ei,t|Im)− E(ei,t|Im−1)] . (C2)

This equation is simply the expression we would have derived for stock returns at a monthly
frequency if annual emissions intensity is priced. The equation is the monthly equivalent of
equation (10).

In equation (C2), γm = γ
12

and
Pi,m

Di,m
=

ρi,m
1−ρi,m

= e
ḡi
12

e
r̄i
12−e

ḡi
12

are monthly equivalents of γ and

the price-dividend ratio in the Gordon Growth model, respectively. In turn, r̄i
12

and gi
12

are
the long-run average monthly stock returns and dividend growth rates for firm i.

Equation (C2) shows that, at the beginning of each month m during year t, required stock
returns ri,m depend on expected emissions intensity during year t conditional on investors
information sets at the end of month m − 1, γmE(ei,t|Im−1) . In addition, the unexpected
part of stock returns during month m depends on the change in expectations about emissions
intensity between months m− 1 and m, −γm

Pi,m

Di,m
[E(ei,t|Im)− E(ei,t|Im−1)].

Consider an empirical analysis of the monthly data that takes the form:

ri,m = γmei,s + ui,s, (C3)

where ei,s is emissions intensity measured at either s = t or s = t − 1. These regressions
suffer from measurement error in monthly data because required stock returns during the
month depend on E(ei,t|m−1), which may be different from ei,t and ei,t−1 if investors gather
information during the year to predict emissions intensities.

To investigate whether regressions with annual data perform better, we first aggregate
the data to derive the process for annual stock returns implied by monthly stock returns. We
obtain:

ri,t =
12∑

m=1

ri,m = γm

12∑
m=1

E(ei,t|Im−1)−
12∑

m=1

γm
Pi,m

Di,m

[E(ei,t|Im)− E(ei,t|Im−1)]

= γm

12∑
m=1

E(ei,t|Im−1)− γm
Pi,m

Di,m

12∑
m=1

[E(ei,t|Im)− E(ei,t|Im−1)]

= γm

12∑
m=1

E(ei,t|Im−1)− γm
Pi,m

Di,m

[E(ei,t|I12)− E(ei,t|I0)] , (C4)

where we pull γm and pdi,m outside the summation because they are constants that do not
change with month m.

We assume that the emissions intensity for each year t is learned by the end of year t.
This assumption, together with the assumption that emissions intensity follows a random
walk, implies:

ri,t = γm

12∑
m=1

E(ei,t|Im−1)−γm
Pi,m

Di,m

(ei,t−ei,t−1) ≈ γm

12∑
m=1

E(ei,t|Im−1)−γ
Pi

Di

(ei,t−ei,t−1), (C5)
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where the approximation follows from noting that
Pi,m

Di,m
is the monthly price-dividend ratio.

Using the approximation that the monthly dividend is the annual dividend D divided by 12,
we have

Pi,m

Di,m
≈ Pi

Di/12
= 12 Pi

Di
, where Pi

Di
is the long-run price-annual dividend ratio for firm i.

A little algebra then shows γm
Pi,m

Di,m
= γ Pi

Di
.

Taking expectations of both sides of the equation conditional on information at time t− 1
(which is equivalent to conditioning on month 0) yields:

E(ri,t|It−1) = γm

12∑
m=1

E[E(ei,t|Im−1)|It−1]− γ
Pi

Di

E[(ei,t − ei,t−1)|It−1]

= γm × 12× ei,t−1

= γei,t−1 (C6)

Hence, aggregating up from monthly stock returns and combining equations (C6) and
(C5), annual stock returns can be decomposed into an expected stock return component
followed by two innovation terms as follows, all in square braces:

ri,t = [γei,t−1]−
[
γ
Pi

Di

(ei,t − ei,t−1)

]
+

[
γm

12∑
m=1

(E(ei,t|Im−1)− ei,t−1)

]
. (C7)

Recalling that the risk-free rate is set to zero for simplicity, the left hand side of the above
equation and the first two terms on the right hand side are reminiscent of equation (10).
The third term on the right hand side captures the learning about emissions that occurs
each month of the year and alters required stock returns in the following month. Because
emissions intensity is a random walk, both the second and third terms on the right hand side
are uncorrelated with ei,t−1. Hence, the cross-sectional regression

ri,t = γei,t−1 + ui,t (C8)

using annual stock return data produces unbiased and consistent estimates for γ provided
that emissions intensity for each year t is known by the end of the year. This may be a
reasonable approximation provided that investors learn about emissions intensity through
the year (but before it is publicly released).

Finally, the third term on the right hand side of equation (C7) can be simplified as:

γm

12∑
m=1

(E(ei,t|Im−1 − ei,t−1) = γ
1

12

12∑
m=1

(E(ei,t|Im−1 − ei,t−1) ≈ γ(ei,t − ei,t−1) + γζi,t (C9)

where the approximation follows by recognizing that 1
12

∑12
m=1 E(ei,t|Im−1) is an average of

forecasts of ei,t, which can be represented as the quantity being forecasted, ei,t, plus an
average forecast error ζi,t that has a mean of 0 if forecasts are unbiased.

Using equation (C9), equation (C7) can be rewritten as:

ri,t ≈ γei,t−1 − γ

(
Pi

Di

− 1

)
(ei,t − ei,t−1) + γζi,t (C10)
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This equation, based on time-aggregation from monthly to annual stock return data is very
similar to equation (10) based on annual stock returns, with the exception that the price-
dividend ratio interaction term is modified slightly, and there is an expectational error-term
ζi,t. Because the differences from equation (10) are so slight, the analytical and empirical
results on omitted variable biases and measurement error biases that were derived in the
annual stock return setting also work in this richer setting aggregated up from monthly data.

To summarize, we have shown three results: (i) If annual emissions intensity is priced
and follows a random walk, and if investors learn about it during the year, monthly stock
return regressions suffer from measurement error if the variable used to measure beliefs about
emissions intensity is the actual or lagged emissions intensity for the year; (ii) If emissions
intensity follows a random walk and if emissions intensity for each year t is known by investors
by the end of year t, a regressions of annual stock returns on one-year lagged emissions
intensity produces unbiased and consistent estimates for γ; (iii) The equation relating annual
stock returns to lagged emissions intensity when aggregated up from our stock return model
at a monthly frequency very closely resembles the equation for stock returns from our model
at an annual frequency. Hence, the results we derived in our annual stock return model for
regressions using annual data are essentially unchanged for our model derived from monthly
stock returns with learning that are aggregated up to an annual level.

D High vs. low P/D: Are coefficients different?

This section derives how to test for differences in coefficients when we sort the data each year
into firms that are above and below the median price-dividend ratio.

Ya,t and Yb,t are the vector of dependent variables for firms that have above and below
median average price-dividend ratios based on the three years before period t, respectively.
Xa,t, Xb,t, ϵa,t and ϵb,t are the corresponding independent variable vectors and residual vectors.
Ya, Yb Xa, Xb, ϵa, and ϵb are the corresponding stacked vectors across time. Each vector has
a total of N observations.

The regression models are:
Ya = Xaβa + ϵa (D1)

Yb = Xbβb + ϵb (D2)

In these regression models one of the components of βa is βa,ei, which is the the coefficient
associated with the emissions intensity variable. Similar notation applies to βb. The null
hypothesis is that there is no omitted variable bias, and therefore that βa,ei = βb,ei. The
alternative hypothesis is that the omitted variable bias is larger for firms with higher price-
dividend ratio and therefore βb,ei > βa,ei

The test for the null is:

Z =
β̂b,ei − β̂a,ei√
ˆV ar(β̂b,ei − β̂a,ei)

(D3)

Z should be asymptotically normally distributed under the null hypothesis; and the null
is rejected in favor of the alternative for high enough values of Z. Hence, we reject the null
at the p percent confidence level if 1− Φ(z) < p.
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The coefficient estimates for βa are given by:

β̂a = (X ′
aXa)

−1X ′
aYa

= βa + (X ′
aXa)

−1X ′
aϵa

The coefficient estimates for β̂b are analogous.
We estimate the Z statistic using three different assumptions about the denominator. In

the first case, we assume Cov(β̂b,ei, β̂a,ei) = 0. In this case, we just compute the standard
OLS variances for the coefficients. For the second and third cases, we account for the
covariances between the parameter estimates in the different regressions using an approach
analogous to clustering. We consider clustering by time or clustering by time and industry.
For consistency, we also compute the variances in each regression using clustering when we
compute covariances using clustering. Details on the clustering approaches are below.

Time clustering. We assume that the elements of the matrix X ′
aϵa are correlated within

time periods, but not across time periods. The variance of β̂a is:

V ar(β̂a)|Xa = (X ′
aXa)

−1[E(X ′
aϵaϵ

′
aXa)](X

′
aXa)

−1,

which is estimated as:

ˆV arβ̂a = (X ′
aXa)

−1

[
T∑
t=1

X ′
a,tϵa,tϵ

′
a,tXa,t

]
(X ′

aXa)
−1 (D4)

where the observations in the regression and the residuals have been stacked by time period.
The expression for the variance of βb is analogous.

The expression for their covariance is, by definition:

Cov(β̂a, β̂b)|(Xa, Xb) = (X ′
aXa)

−1[E(X ′
aϵaϵ

′
bXb)](X

′
bXb)

−1

Using the analogy to time clustering, this is estimated as:

Ĉov(β̂a, β̂b) = (X ′
aXa)

−1

[
T∑
t=1

X ′
a,tϵa,tϵ

′
b,tXb,t

]
(X ′

bXb)
−1 (D5)

Using these expressions:

ˆV ar(β̂b,ei − β̂a,ei) = ˆV ar(β̂b,ei) + ˆV ar(β̂a,ei)− 2 ˆCov(β̂b,ei, β̂a,ei). (D6)

Double clustering. We now calculate the variance of the coefficients and their covariance
assuming the residuals in the regression are correlated across time and also across a second
dimension, such as either industry or firm.

For brevity, we let industry be the second dimension. Analogous expressions apply when
clustering by time and firm. To derive the correct expressions, let ϵa,ind be the vector of
residuals from equation (D1) partitioned by industry, i.e., the first sub-vector of observations
are residuals for industry 1 for periods 1, . . . T , the second sub-vector is for industry 2, and
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so on. Similary, let ϵa,ind,t and Xa,ind,t represent the sub-vector of the residuals and the X
matrix for industry “ind” and time period t.

The variance estimate with double clustering (derived independently by Miglioretti and
Heagerty (2007), Thompson (2011), and Cameron et al. (2011)) is given by:25

V̂ar(β̂a)|Xa = (X ′
aXa)

−1

[
T∑
t=1

X ′
a,tϵa,tϵ

′
a,tXa,t

]
(X ′

aXa)
−1 (D7)

+ (X ′
aXa)

−1

[
NInd∑
Ind=1

X ′
a,Indϵa,Indϵ

′
a,IndXa,Ind

]
(X ′

aXa)
−1

− (X ′
aXa)

−1

[
T∑
t=1

NInd∑
Ind=1

X ′
a,t,Indϵa,t,Indϵ

′
a,t,IndXa,t,Ind

]
(X ′

aXa)
−1

The first line of the expression captures the effect of just clustering by time; the second
captures the effect of just clustering by industry. The first and second lines lead to some
double-counting because both lines capture the effect of industry observations that occur in
the same time periods. The third line adjusts by subtracting off the double-counted term.
The expression for V̂ar(β̂b) is analogous.

To estimate Cov(β̂a, β̂b), we follow an analogous approach to that in equation (D5):

ˆCov(β̂a,β̂b)|(Xa, Xb)

=(X ′
aXa)

−1

[
1

N

T∑
t=1

X ′
a,tϵa,tϵ

′
b,tXb,t

]
(X ′

bXb)
−1

+ (X ′
aXa)

−1

[
NInd∑
Ind=1

X ′
a,Indϵa,Indϵ

′
b,IndXb,Ind

]
(X ′

bXb)
−1

− (X ′
aXa)

−1

[
T∑
t=1

NInd∑
Ind=1

X ′
a,t,Indϵa,t,Indϵ

′
b,t,IndXb,t,Ind

]
(X ′

bXb)
−1

(D8)

The approach for testing the null hypothesis proceeds in the same way as in the single-
clustering case.

25See also MacKinnon et al. (2023)’s review article on clustering.
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E Additional tables

Year No. of Firms

2001 38
2002 320
2003 442
2004 513
2005 665
2006 654
2007 648
2008 661
2009 679
2010 675
2011 677
2012 680
2013 744
2014 724
2015 886
2016 1951
2017 2029
2018 2066
2019 2047
2020 2150
2021 2242
2022 2212
2023 1268

Table E.1: Number of observations by year. This table shows the number of firm-year observations in
Trucost by year.
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NAICS2 Industry Observations No. Firms

11 Agriculture, forestry, fishing and hunting 70 14
21 Mining, quarrying, and oil and gas extraction 1552 181
22 Utilities 1220 110
23 Construction 227 46
31 Manufacturing 962 115
32 Manufacturing 2749 405
33 Manufacturing 5960 752
42 Wholesale trade 862 132
44 Retail trade 1018 114
45 Retail trade 575 85
48 Transportation and warehousing 807 115
49 Transportation and warehousing 51 7
51 Information 2534 424
52 Finance and insurance 552 86
53 Real estate and rental and leasing 825 216
54 Professional, scientific, and technical services 2932 642
56 Management of companies and enterprises 515 79
61 Educational services 154 21
62 Health care and social assistance 512 79
71 Arts, entertainment, and recreation 154 31
72 Accomodation and food services 591 75
81 Other services 149 33

Table E.2: Number of observations by industry. This table shows the number of firm-year observations
and the number of unique firms in Trucost by industry (2-digit NAICS code). Firms that change industries
across years are included in the count for each industry they belong to during the sample period. Among
the final sample of unique firms, 2,550 remain in the same industry for the whole sample period, 518 are
observed in two industries, 53 in 3 industries, 3 in 4 industries, and 1 firm is counted in 5 industries.
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PANEL A: Full Sample N Mean SD P75 P50 P25

Rit 22693 −8.48 50.02 18.34 −9.53 −40.44
Scope-1 emissionit−1 22693 265.92 1070.74 52.17 17.94 8.48
Scope-1+Scope-2 emissionit−1 22693 306.01 1088.43 103.84 43.32 23.97
MCAPit−1 22693 14.76 1.72 15.92 14.78 13.59
LEVit−1 22693 123.58 170.83 148.84 61.39 17.85
INVEST/Ait−1 22693 4.40 4.38 5.68 3.03 1.49
ROEit−1 22693 2.47 54.91 19.19 10.01 −2.32
VOLit−1 22693 0.98 0.60 1.21 0.81 0.56
BETAit−1 22693 1.21 1.21 1.79 1.11 0.55
B/Mit−1 22693 0.52 0.45 0.70 0.41 0.22

PANEL B: Excluding NAICS 2211 N Mean SD P75 P50 P25

Rit 22225 −8.45 50.29 18.60 −9.63 −40.76
Scope-1 emissionit−1 22225 167.51 604.69 46.20 17.47 8.35
Scope-1+Scope-2 emissionit−1 22225 207.57 637.29 97.25 42.34 23.63
MCAPit−1 22225 14.74 1.73 15.90 14.77 13.56
LEVit−1 22225 118.66 167.28 139.98 59.30 17.00
INVEST/Ait−1 22225 4.36 4.40 5.56 2.97 1.46
ROEit−1 22225 2.40 55.41 19.42 10.10 −2.66
VOLit−1 22225 0.99 0.60 1.22 0.82 0.57
BETAit−1 22225 1.23 1.21 1.80 1.13 0.56
B/Mit−1 22225 0.51 0.45 0.69 0.40 0.21

Table E.3: Summary statistics. This table shows the summary statistics for the main variables used
in our empirical analysis. Panel A focuses on the full sample of firms. Panel B focuses on the full sample
excluding firms operating in “Electric Power Generation, Transmission, and Distribution” (NAICS 2211).
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Rit

(1) (2) (3) (4) (5) (6)

Scope-1 emissionit−1 0.0785 0.1231∗∗

(0.0487) (0.0570)
Scope-1+Scope-2 emissionit−1 0.0814∗ 0.1180∗∗

(0.0490) (0.0559)
MCAPit−1 0.7920∗∗ 0.8531∗∗ 0.8587∗∗ 0.8143∗∗ 0.8999∗∗ 0.9020∗∗

(0.3603) (0.3637) (0.3634) (0.3775) (0.3801) (0.3797)
LEVit−1 0.0001 −0.0010 −0.0010 −0.0005 −0.0007 −0.0008

(0.0031) (0.0033) (0.0033) (0.0038) (0.0038) (0.0038)
INVEST/Ait−1 −0.4815∗∗∗ −0.5014∗∗∗ −0.5044∗∗∗ −0.4401∗∗∗ −0.4438∗∗∗ −0.4448∗∗∗

(0.1227) (0.1232) (0.1231) (0.1364) (0.1359) (0.1358)
ROEit−1 0.0158 0.0159 0.0158 0.0168 0.0168 0.0167

(0.0115) (0.0115) (0.0115) (0.0114) (0.0114) (0.0114)
VOLit−1 7.605∗∗∗ 7.757∗∗∗ 7.738∗∗∗ 7.882∗∗∗ 7.866∗∗∗ 7.842∗∗∗

(1.970) (1.977) (1.973) (2.095) (2.090) (2.092)
BETAit−1 −0.4063 −0.3851 −0.3878 −0.6545 −0.6479 −0.6513

(0.6786) (0.6769) (0.6771) (0.6775) (0.6753) (0.6753)
B/Mit−1 4.370∗∗∗ 4.036∗∗∗ 4.007∗∗∗ 4.784∗∗∗ 4.637∗∗∗ 4.619∗∗∗

(1.393) (1.404) (1.407) (1.486) (1.479) (1.481)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓

Observations 6,623 6,623 6,623 6,623 6,623 6,623
R2 0.3533 0.3535 0.3536 0.3579 0.3584 0.3584

Table E.4: Effect of lagged emissions on stock returns, subsample of firms with disclosed
emissions. This table shows the estimation results of equation (17). The unit of observation is firm-year.
The sample runs at an annual frequency from 2001 to 2023. The sample excludes observations of firms
classified under “Electric Power Generation, Transmission and Distribution” (NAICS 2211) or observations
with Trucost-estimated emissions. Following Aswani et al. (2024), we define “estimated” emissions as those
for which the Trucost carbon information source includes the keyword “estimate.” Scope-1 emissionit−1 and
Scope-1+Scope-2 emissionit−1 are the lagged scope-1 emissions intensity and the sum of scope-1 and scope-2
emissions intensities, respectively. The reported coefficients on emissions intensities are multiplied by 100 for
readability. The control variables are lagged by one year, winsorized at the 2nd and 98th percentiles, and
defined as follows: MCAPit−1 is log of market capitalization; LEVit−1 is total debt divided by total assets;
INVEST/Ait−1 is investment divided by total assets; ROEit−1 is net income divided by shareholders’ equity
(multiplied by 100); VOLit−1 is the standard deviation of monthly stock returns over a 12-month period;
BETAit−1 is the CAPM beta over a 12-month period; B/Mit−1 is the book-to-market ratio. Standard errors
clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Rit

PANEL A (1) (2) (3) (4) (5) (6) (7)

Scope-1 emissionit−1 0.1660∗∗∗ 0.1672∗∗∗ 0.1658∗∗∗ 0.1661∗∗∗ 0.1664∗∗∗ 0.1663∗∗∗ 0.1659∗∗∗

(0.0525) (0.0528) (0.0528) (0.0526) (0.0525) (0.0524) (0.0525)
LEVit−1 −0.0030 −0.0020 −0.0022 −0.0022 −0.0024 −0.0022

(0.0022) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022)
INVEST/Ait−1 −0.4128∗∗∗ −0.4263∗∗∗ −0.4306∗∗∗ −0.4302∗∗∗ −0.4349∗∗∗

(0.0922) (0.0915) (0.0917) (0.0915) (0.0918)
ROEit−1 0.0399∗∗∗ 0.0408∗∗∗ 0.0403∗∗∗ 0.0411∗∗∗

(0.0075) (0.0078) (0.0078) (0.0078)
VOLit−1 0.1984 −0.3959 −0.8096

(0.7772) (0.8406) (0.9210)
BETAit−1 0.7061∗∗ 0.7539∗∗

(0.3294) (0.3300)
MCAPit−1 −0.2779

(0.2220)

Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 22,498 22,459 22,453 22,453 22,448 22,448 22,445
R2 0.24792 0.24794 0.24877 0.25062 0.25075 0.25098 0.25099

Rit

PANEL B (1) (2) (3) (4) (5) (6) (7)

Scope-1+Scope-2 emissionit−1 0.1734∗∗∗ 0.1750∗∗∗ 0.1738∗∗∗ 0.1730∗∗∗ 0.1734∗∗∗ 0.1728∗∗∗ 0.1729∗∗∗

(0.0506) (0.0509) (0.0506) (0.0501) (0.0500) (0.0500) (0.0501)
LEVit−1 −0.0031 −0.0021 −0.0022 −0.0022 −0.0024 −0.0022

(0.0022) (0.0022) (0.0022) (0.0022) (0.0022) (0.0022)
INVEST/Ait−1 −0.4127∗∗∗ −0.4262∗∗∗ −0.4305∗∗∗ −0.4301∗∗∗ −0.4349∗∗∗

(0.0922) (0.0914) (0.0916) (0.0915) (0.0918)
ROEit−1 0.0399∗∗∗ 0.0408∗∗∗ 0.0403∗∗∗ 0.0411∗∗∗

(0.0075) (0.0078) (0.0078) (0.0078)
VOLit−1 0.1920 −0.4001 −0.8186

(0.7773) (0.8406) (0.9212)
BETAit−1 0.7036∗∗ 0.7519∗∗

(0.3293) (0.3300)
MCAPit−1 −0.2811

(0.2221)

Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 22,498 22,459 22,453 22,453 22,448 22,448 22,445
R2 0.2480 0.2480 0.2488 0.2507 0.2508 0.2510 0.2510

Table E.5: Effect of lagged emissions intensity on stock returns, sensitivity with respect
to control variables, year and industry fixed effects. This table shows the estimation results of
specification (17). The unit of observation is firm-year. The sample runs at an annual frequency from 2001
to 2023. The sample excludes observations of firms classified under “Electric Power Generation, Transmission
and Distribution” (NAICS 2211). Scope-1 emissionit−1 and Scope-1+Scope-2 emissionit−1 are the lagged
scope-1 emissions intensity and the sum of scope-1 and scope-2 emissions intensities, respectively. The
reported coefficients on emissions intensities are multiplied by 100 for readability. The control variables
are lagged by one year, winsorized at the 2nd and 98th percentiles, and defined as follows: MCAPit−1 is
log of market capitalization; LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is investment
divided by total assets; ROEit−1 is net income divided by shareholders’ equity (multiplied by 100); VOLit−1

is the standard deviation of monthly stock returns over a 12-month period; BETAit−1 is the CAPM beta
over a 12-month period; B/Mit−1 is the book-to-market ratio. Standard errors clustered at the firm level in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Rit

PANEL A (1) (2) (3) (4) (5) (6) (7)

Scope-1 emissionit−1 0.0554 0.0802∗ 0.1178∗∗ 0.1169∗∗ 0.1176∗∗ 0.1188∗∗ 0.1181∗∗

(0.0450) (0.0468) (0.0480) (0.0478) (0.0479) (0.0476) (0.0478)
LEVit−1 −0.0048∗∗ −0.0021 −0.0022 −0.0022 −0.0023 −0.0021

(0.0019) (0.0019) (0.0019) (0.0019) (0.0019) (0.0019)
INVEST/Ait−1 −0.4338∗∗∗ −0.4496∗∗∗ −0.4551∗∗∗ −0.4589∗∗∗ −0.4629∗∗∗

(0.0765) (0.0759) (0.0764) (0.0763) (0.0767)
ROEit−1 0.0429∗∗∗ 0.0432∗∗∗ 0.0426∗∗∗ 0.0434∗∗∗

(0.0074) (0.0078) (0.0078) (0.0078)
VOLit−1 −0.0448 −0.7386 −1.121

(0.7560) (0.8225) (0.9001)
BETAit−1 0.8059∗∗ 0.8481∗∗∗

(0.3271) (0.3278)
MCAPit−1 −0.2542

(0.2179)

Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry FE

Observations 22,498 22,459 22,453 22,453 22,448 22,448 22,445
R2 0.2451 0.2453 0.2465 0.2487 0.2488 0.2491 0.2491

Rit

PANEL B (1) (2) (3) (4) (5) (6) (7)

Scope-1+Scope-2 emissionit−1 0.0641 0.0885∗ 0.1265∗∗∗ 0.1247∗∗∗ 0.1254∗∗∗ 0.1259∗∗∗ 0.1257∗∗∗

(0.0439) (0.0455) (0.0466) (0.0461) (0.0462) (0.0459) (0.0460)
LEVit−1 −0.0049∗∗∗ −0.0022 −0.0023 −0.0023 −0.0024 −0.0022

(0.0019) (0.0019) (0.0019) (0.0019) (0.0019) (0.0019)
INVEST/Ait−1 −0.4377∗∗∗ −0.4534∗∗∗ −0.4588∗∗∗ −0.4625∗∗∗ −0.4666∗∗∗

(0.0766) (0.0759) (0.0764) (0.0764) (0.0768)
ROEit−1 0.0428∗∗∗ 0.0432∗∗∗ 0.0425∗∗∗ 0.0433∗∗∗

(0.0074) (0.0078) (0.0078) (0.0078)
VOLit−1 −0.0502 −0.7420 −1.128

(0.7557) (0.8223) (0.8998)
BETAit−1 0.8033∗∗ 0.8459∗∗∗

(0.3270) (0.3277)
MCAPit−1 −0.2567

(0.2179)

Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry FE

Observations 22,498 22,459 22,453 22,453 22,448 22,448 22,445
R2 0.2452 0.2453 0.2466 0.2488 0.2489 0.2492 0.2492

Table E.6: Effect of lagged emissions intensity on stock returns, sensitivity with respect to
control variables, year fixed effects. This table shows the estimation results of specification (17). The
unit of observation is firm-year. The sample runs at an annual frequency from 2001 to 2023. The sample
excludes observations of firms classified under “Electric Power Generation, Transmission and Distribution”
(NAICS 2211). Scope-1 emissionit−1 and Scope-1+Scope-2 emissionit−1 are the lagged scope-1 emissions
intensity and the sum of scope-1 and scope-2 emissions intensities, respectively. The reported coefficients
on emissions intensities are multiplied by 100 for readability. The control variables are lagged by one year,
winsorized at the 2nd and 98th percentiles, and defined as follows: MCAPit−1 is log of market capitalization;
LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is investment divided by total assets; ROEit−1 is
net income divided by shareholders’ equity (multiplied by 100); VOLit−1 is the standard deviation of monthly
stock returns over a 12-month period; BETAit−1 is the CAPM beta over a 12-month period; B/Mit−1 is the
book-to-market ratio. Standard errors clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, *
p<0.1.

57



Rit

(1) (2) (3) (4) (5) (6)

Scope-1 emissionit−1 −0.0066 0.0220
(0.0269) (0.0356)

Scope-1+Scope-2 emissionit−1 −0.0005 0.0301
(0.0273) (0.0358)

MCAPit−1 −0.1061 −0.1044 −0.1059 −0.1212 −0.1245 −0.1266
(0.2275) (0.2279) (0.2281) (0.2331) (0.2334) (0.2335)

LEVit−1 −0.0022 −0.0021 −0.0022 −0.0020 −0.0020 −0.0020
(0.0018) (0.0019) (0.0019) (0.0022) (0.0022) (0.0022)

INVEST/Ait−1 −0.4459∗∗∗ −0.4451∗∗∗ −0.4459∗∗∗ −0.4115∗∗∗ −0.4104∗∗∗ −0.4100∗∗∗

(0.0756) (0.0759) (0.0760) (0.0905) (0.0905) (0.0905)
ROEit−1 0.0413∗∗∗ 0.0412∗∗∗ 0.0413∗∗∗ 0.0391∗∗∗ 0.0391∗∗∗ 0.0391∗∗∗

(0.0078) (0.0078) (0.0078) (0.0078) (0.0078) (0.0078)
VOLit−1 −1.111 −1.116 −1.111 −0.7902 −0.8001 −0.8051

(0.8953) (0.8962) (0.8960) (0.9173) (0.9177) (0.9178)
BETAit−1 0.8949∗∗∗ 0.8928∗∗∗ 0.8948∗∗∗ 0.7936∗∗ 0.7945∗∗ 0.7946∗∗

(0.3249) (0.3250) (0.3250) (0.3276) (0.3275) (0.3275)
B/Mit−1 1.735∗∗ 1.763∗∗ 1.737∗∗ 1.784∗∗ 1.748∗∗ 1.730∗∗

(0.8064) (0.8131) (0.8139) (0.8444) (0.8414) (0.8418)

Year FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓

Observations 22,693 22,693 22,693 22,693 22,693 22,693
R2 0.2507 0.2507 0.2507 0.2525 0.2525 0.2525

Table E.7: Effect of lagged emissions on stock returns, full sample. This table shows the estimation
results of equation (17). The unit of observation is firm-year. The sample runs at an annual frequency
from 2001 to 2023. Scope-1 emissionit−1 and Scope-1+Scope-2 emissionit−1 are the lagged scope-1 emissions
intensity and the sum of scope-1 and scope-2 emissions intensities, respectively. The reported coefficients
on emissions intensities are multiplied by 100 for readability. The control variables are lagged by one year,
winsorized at the 2nd and 98th percentiles, and defined as follows: MCAPit−1 is log of market capitalization;
LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is investment divided by total assets; ROEit−1 is
net income divided by shareholders’ equity (multiplied by 100); VOLit−1 is the standard deviation of monthly
stock returns over a 12-month period; BETAit−1 is the CAPM beta over a 12-month period; B/Mit−1 is the
book-to-market ratio. Standard errors clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, *
p<0.1.
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PANEL A (1) (2) (3) (4)

Scope-1+Scope-2 emissionit−1 −0.0005 0.0466 0.1182 0.2932
(0.0273) (0.0416) (0.0949) (0.2133)

Winsorization None 2% 5% 10%

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE

Observations 22,693 22,693 22,693 22,693
R2 0.2507 0.2508 0.2508 0.2508

Rit

PANEL B (1) (2) (3) (4)

Scope-1+Scope-2 emissionit−1 0.0301 0.1437∗∗∗ 0.3427∗∗∗ 0.9511∗∗∗

(0.0358) (0.0513) (0.1116) (0.2608)

Winsorization None 2% 5% 10%

Controls ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓ ✓

Observations 22,693 22,693 22,693 22,693
R2 0.2525 0.2527 0.2527 0.2529

Table E.8: Effect of lagged emissions on stock returns, sensitivity with respect to winsorization
of emissions intensity, scope-1+scope-2 emissions intensity. This table shows the estimation results of
specification (17). The unit of observation is firm-year. The sample runs annually from 2001 to 2023. Panel A
includes only year fixed effects, while Panel B includes both year and industry fixed effects. Scope-1+Scope-2
emissionit−1 is the lagged sum of scope-1 and scope-2 emissions intensities. The reported coefficients on
emissions intensities are multiplied by 100 for readability. Emissions intensites are unwinsorized in Column
(1), winsorized at the 2nd and 98th percentiles in Column (2), the 5th and 95th percentiles in Column (3),
and the 10th and 90th percentiles in Column (4). The set of control variables included in our baseline
specification are also included in these two panels but omitted for brevity. The control variables are lagged
by one year, winsorized at the 2nd and 98th percentiles, and defined as follows: MCAPit−1 is log of market
capitalization; LEVit−1 is total debt divided by total assets; INVEST/Ait−1 is investment divided by total
assets; ROEit−1 is net income divided by shareholders’ equity (multiplied by 100); VOLit−1 is the standard
deviation of monthly stock returns over a 12-month period; BETAit−1 is the CAPM beta over a 12-month
period; B/Mit−1 is the book-to-market ratio. Standard errors clustered at the firm level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
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F Additional figures
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Figure F.1: Cumulative distribution function (CDF) of estimated required stock returns for
scope-1 emissions intensity. This figure shows the CDFs of estimated annual required stock returns
for firms in the period 2002–23 using our preferred specification from Table 2. Required stock returns are
calculated by multiplying each firm-year’s scope-1 emissions intensity by the corresponding coefficient from
Table 2, 0.10 for the specification with year fixed effects (red curve) and 0.15 for the specification with year
and industry fixed effects (blue curve). This analysis excludes observations of firms classified under “Electric
Power Generation, Transmission and Distribution” (NAICS 2211). The top panel displays results for the full
sample, while the bottom panel displays results for firms whose scope-1 emissions are within the bottom 90%
of the distribution.
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